Homework 1
Due in-class on Monday, September 21

1. Determine all the maximal prime ideals of the ring $\mathbb{R}[x]$, and the effect of the map

$$
\{\text { prime ideals of } \mathbb{C}[x]\} \rightarrow\{\text { prime ideals of } \mathbb{R}[x]\}
$$

given by $\mathfrak{P} \mapsto \mathfrak{P} \cap \mathbb{R}[x]$.
2. Determine the irreducible components of the closed algebraic subset defined by the equations

$$
x^{2}-x=y^{2}-y=x y-y=x y-x=0
$$

in two variables.
3. From commutative algebra: if R is a unique factorization domain, then so is the polynomial ring $R[x]$. State the classification of irreducible elements of $R[x]$, and use it to show that the closed algebraic set defined by $y^{2}=x^{3}+a x^{2}+b x+c$ is irreducible for any $a, b, c \in \mathbb{C}$. (Be warned that "irreducible" means two distinct things in this problem.)
4. Show that the algebraic set of (x, y, z) such that

$$
x z=y^{2}, x^{3}=y z, z^{2}=x^{2} y
$$

is irreducible, and that the solutions are all of the form $\left(t^{3}, t^{4}, t^{5}\right)$. Show the first two of these equations define an algebraic subset with two irreducible components, and describe the other component.

