Homework 2
Due in-class on Monday, September 28

1. Show that, for any irreducible $X \subset \mathbb{A}^{n}$, the closure \bar{X} of X in \mathbb{P}^{n} is irreducible. Determine the closures in \mathbb{P}^{2} of the plane curves

$$
\left\{(x, y) \mid y^{2}=x^{3}+a x^{2}+b x+c\right\}
$$

and

$$
\left\{(x, y) \mid x^{2}+b x y+c y^{2}+d x+e y+f=0\right\}
$$

2. Suppose that an ideal $J \subset k\left[x_{1}, \ldots, x_{n}\right]$ is contained in the maximal ideal $M=\left(x_{1}, \ldots, x_{n}\right)$ and that J can be generated by r elements f_{1}, \ldots, f_{r}.
Let M^{2} be the ideal generated by elements $x_{i} x_{j}$ for $1 \leq i, j \leq n$. Show that the dimension of the ring

$$
k\left[x_{1}, \ldots, x_{n}\right] /\left(J+M^{2}\right),
$$

viewed as a k-vector space, is at least $1+n-r$.
3. Using the previous problem, show that the curve from the previous problem set, defined by the equations

$$
x z=y^{2}, x^{3}=y z, z^{2}=x^{2} y,
$$

cannot be the solution set of any collection with less than three equations.
4. Define a map $p: \mathbb{A}^{n+1} \backslash\{0\} \rightarrow \mathbb{P}^{n}$, given by

$$
p\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\left[x_{0}: x_{1}: \cdots: x_{n}\right] .
$$

Show that this map is algebraic by showing that its restrictions to the affine subvarieties $\mathbb{A}^{n+1} \backslash\left\{x_{i}=0\right\}$ are algebraic.
5. Suppose we have the nondegenerate conic C in \mathbb{P}^{2} defined by

$$
\left\{[x: y: z] \mid x^{2}-y^{2}=z^{2}\right\}
$$

so that $[1: 0: 1]$ is a solution. Show that the map, sending a point $[x: y: 1]$ of C to the slope $[y: x-1]$ of the line through (x, y) and $(1,0)$, extends to an isomorphism of varieties between C and \mathbb{P}^{1}. (This construction works for all nondegenerate conics with a chosen point.)

