Math 8301, Manifolds and Topology
 Homework 2
 Due in-class on Friday, Sep 19

1. Show graphically that the simplicial complex with 7 vertices, generated by the triangles below, gives rise to a space homeomorphic to the torus.

$$
\begin{array}{lllllll}
123 & 127 & 134 & 145 & 156 & 167 & 236 \\
245 & 246 & 257 & 347 & 356 & 357 & 467
\end{array}
$$

2. For a 2-dimensional simplicial complex with v vertices, e edges, and f triangles, the Euler characteristic χ is defined to be $v-e+f$. If this simplicial complex gives rise to a compact surface, give formulas for e and f which are nondecreasing in v in terms of χ and v.
3. Using the formulas from the previous problem, show that any triangulation of a compact surface of Euler characteristic 0 requires at least 7 vertices, and any of Euler characteristic 1 requires at least 6 vertices.
4. By identifying points on opposite sides of an icosahedron, give a simplicial complex triangulating $\mathbb{R} \mathbb{P}^{2}$ (the surface obtained from S^{2} by identifying (x, y, z) with $(-x,-y,-z))$ having 6 vertices and 10 faces. If you don't have easy access to an icosahedron for reference, the logo for the Mathematical Association of America is a picture of (the visible half of) one.
5. Suppose that you are given a description of a surface by edge identifications as in class: you have an ordered sequence of elements of the form a or a^{-1}, drawn from some set of letters A, such that each letter in A occurs exactly twice (ignoring the number of inverse signs that occur). Show that if a subsequence of the form $a a b c b^{-1} c^{-1}$ occurs anywhere, you can get an equivalent description of the surface by replacing just this subsequence with $x x y y z z$ and leaving the rest alone (where x, y, z are new letters and a, b, c are thrown out). Either a description by cut-and-paste or by algebraic substitution are acceptable.
