Math 8301, Manifolds and Topology Homework 5 Due in-class on **Friday, Oct 10**

- 1. Show that the fundamental group of the *n*-sphere S^n is trivial for n > 1 by directly showing that any loop γ is homotopic to the trivial loop.
- 2. Now give a proof of the same using the Seifert-Van Kampen theorem.
- 3. Suppose f(z) is a monic polynomial $z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0$ whose coefficients are complex numbers. Recall $S^1 = \{w \in \mathbb{C} \mid |w| = 1\}$. Show that there is a sufficiently large real number R > 0 such that
 - (a) $f(z) \neq 0$ when |z| = R, and
 - (b) the resulting function $S^1 \to \mathbb{C} \setminus \{0\}$, given by $w \mapsto f(Rw)$, is homotopic to the map $w \mapsto (Rw)^n$.
- 4. Suppose you are given a simplicial complex with a finite set \mathcal{V} of vertices and set \mathcal{F} of faces. Let X be the space you get by realizing this simplicial complex. For definiteness, we'll let \mathbb{V} be the vector space with basis \mathcal{V} , and define

$$X = \bigcup_{U \in \mathcal{F}} \left\{ \sum_{v \in U} t_v \cdot v \ \middle| \ t_v \ge 0, \sum t_v = 1 \right\} \subset \mathbb{V}.$$

Show that none of the faces of dimension 3 or greater have any effect on the fundamental group: you can put them in or take them of \mathcal{F} without changing π_1 . (This is also true if the set is infinite.)

- 5. A graph is a simplicial complex with only vertices and edges, i.e. where no faces have dimension higher than one. A *tree* is a graph, with at least one vertex, such that for any vertices $p \neq q$, there exists a *unique* sequence e_1, e_2, \dots, e_n of edges such that
 - (a) $e_i \neq e_j$ for $i \neq j$,
 - (b) e_i and e_{i+1} always share a common vertex,
 - (c) p is a vertex of e_1 , and
 - (d) q is a vertex of e_n .

Show that any tree gives rise to a space with trivial fundamental group. (If you want, you can instead show the stronger statement that this space is contractible.)