Math 8302, Manifolds and Topology II
 Homework 1
 Due in-class on Monday, February 2

Recall for these exercises that, for subspaces $K \subset \mathbb{R}^{n}$ and $L \subset \mathbb{R}^{m}$, a map $f: K \rightarrow L$ is smooth if, for all $p \in K$, there exists an open neighborhood $p \in U \subset \mathbb{R}^{n}$ and a smooth function $g: U \rightarrow \mathbb{R}^{m}$ such that $\left.f\right|_{U \cap K}=\left.g\right|_{U \cap K}$.

1. Suppose $K \subset \mathbb{R}^{n}$ and $p \in K$. Define $T_{p}(K)$ to be the set of vectors $\vec{v} \in \mathbb{R}^{n}$ such that there exists an $\epsilon>0$ and a smooth function c : $(-\epsilon, \epsilon) \rightarrow \mathbb{R}^{n}$ such that $c(0)=p, c([0, \epsilon)) \subset K$, and $c^{\prime}(0)=\vec{v}$. We will call this set the tangent cone of K at p.
Show that if $\vec{v} \in T_{p}(K)$ and $r \geq 0$, then $r \vec{v} \in T_{p}(K)$.
2. Describe the tangent cones of the following subspaces of \mathbb{R}^{2} at $(0,0)$.
(a) The parabola $\left\{(x, y) \mid y=x^{2}\right\}$.
(b) For any $m>0$, the ray $R_{m}=\{(x, y) \mid y=m x, x \geq 0, y \geq 0\}$.
(c) The set $\bigcup_{m>0} R_{m}$. (Careful!)
3. Show that a smooth function $f: K \rightarrow L$ determines a well-defined function $d f_{p}: T_{p}(K) \rightarrow T_{f(p)}(L)$ such that there exists a linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with $d f_{p}=\left.A\right|_{T_{p}(K)}$. Show also that $d(g \circ f)_{p}=$ $d g_{f(p)} \circ d f_{p}$ and $d(i d)_{p}=i d_{T_{p}(K)}$.
4. Show that the diamond $\left\{(x, y) \in \mathbb{R}^{2}| | x|+|y|=1\}\right.$ and the circle $S^{1} \subset \mathbb{R}^{2}$ are not diffeomorphic.
5. (a) Show that, for all real numbers $\alpha, \lim _{y \rightarrow \infty} y^{\alpha} e^{-y}=0$.
(b) Use this, show that for all real numbers $\beta, \lim _{x \rightarrow 0} x^{\beta} e^{-1 / x^{2}}=0$.
(c) Show that the function

$$
\phi(x)= \begin{cases}e^{-1 / x^{2}} & x>0 \\ 0 & x \leq 0\end{cases}
$$

is a smooth function from \mathbb{R} to \mathbb{R}.

