Math 8302, Manifolds and Topology II Homework 3 Due in-class on Monday, February 16

In the following, an *abstract m*-dimensional smooth manifold is an n-dimensional topological manifold M (Hausdorff, second countable, and every point has a neighborhood homeomorphic to an open subset of \mathbb{R}^m) together with a *coordinate atlas*: a set

$$A = \{\varphi_{\alpha} : U_{\alpha} \to V_{\alpha}\}_{\alpha}$$

of "charts": homeomorphisms from open subsets U_{α} of M to open subsets V_{α} of \mathbb{R}^m . In addition, we require that

- the U_{α} cover M in the sense that $M = \bigcup U_{\alpha}$, and
- the charts are *compatible* in the sense that the maps

$$\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$$

are smooth for all choices of α and β .

- 1. If M is an abstract smooth manifold, a function $M \to \mathbb{R}^k$ is smooth at p if it is smooth in coordinates: there exists a coordinate chart $\varphi_{\alpha} : U_{\alpha} \to V_{\alpha}$ in the atlas with $p \in U_{\alpha}$ such that the function $f \circ \varphi_{\alpha}^{-1} : V_{\alpha} \to \mathbb{R}^k$ is smooth at p. Show that this is independent of the choice of coordinate chart.
- 2. Show that an abstract smooth manifold M has an exhaustion by compact sets: there exists a sequence of compact subspaces $K_1 \subset K_2 \subset \cdots$ such that $M = \bigcup K_i$. (Hint: Second countability is critical here.)
- 3. Suppose M is an abstract smooth manifold, $K \subset U \subset M$ an inclusion of a compact subset into an open subset. Suppose we have a smooth function $f : U \to \mathbb{R}^k$. Show that there exists an smooth function $g : M \to \mathbb{R}^k$ such that $f|_K = g|_K$ and $g|_{M \setminus U} = 0$.
- 4. Show that an abstract smooth M has a smooth function $T: M \to \mathbb{R}$ such that $T^{-1}((-\infty, r])$ is compact for any $r \in \mathbb{R}$. (Hint: Use an exhaustion by compact sets.)

- 5. Suppose f(x) is a smooth function $\mathbb{R} \to \mathbb{R}$ such that
 - (a) f(x) = 0 for $x \neq (-1, 1)$,
 - (b) f(0) = 1,
 - (c) f(x) = f(-x),
 - (d) f'(x) < 0 for $x \in (0, 1/2)$.

Suppose that we are given, for each integer n, a real number a_n such that $a_n \neq a_{n+1}$. Construct a smooth function $g(x) : \mathbb{R} \to \mathbb{R}$ whose set of singular points is \mathbb{Z} and such that $f(n) = a_n$.