Math 8306, Algebraic Topology
Homework 11
Due in-class on Monday, November 24

1. Complete the proof I messed up in class: Suppose X is a path-connected (based) space, M is a compact orientable manifold, and $f: S^{1} \wedge X \rightarrow M$ is a map inducing an isomorphism on homology with integer coefficients. Show that X has the same homology as a sphere S^{n}.
2. Suppose M is a compact oriented $4 n$-dimensional manifold with $H^{2 n}(M ; \mathbb{Z})$ torsion free. Poincaré duality gives us a pairing

$$
x, y \mapsto x \cdot y: H^{2 n}(M ; \mathbb{Z}) \times H^{2 n}(M ; \mathbb{Z}) \rightarrow \mathbb{Z}
$$

which is distributive and satisfies $x \cdot y=y \cdot x$. If $e_{1} \ldots e_{g}$ are a basis of $H^{2 n}(M ; \mathbb{Z})$, there is a symmetric matrix $A=\left(a_{i j}\right)$ such that $e_{i} \cdot e_{j}=a_{i j}$.
If we choose a different basis $f_{k}=\sum_{i} c_{k i} e_{i}$, we get a different matrix B. Express B in terms of A using matrix multiplication.
3. Suppose M and N are n-dimensional compact manifolds with orientations $[M] \in H_{n}(M ; \mathbb{Z})$ and $[N] \in H_{n}(N ; \mathbb{Z})$. We define the degree of a map $f: M \rightarrow N$ to be the unique integer a such that $f_{*}([M])=a[N]$. Show that the degree of a map $\mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ is always a square.
4. One statement of Poincaré duality for manifolds with boundary says: If M is a compact manifold with boundary ∂M, there are isomorphisms

$$
D: H^{p}(M ; \mathbb{Z} / 2) \rightarrow H_{n-p}(M, \partial M ; \mathbb{Z} / 2)
$$

Use this to show that there is no compact 3-dimensional manifold W with boundary $\partial W=\mathbb{R} \mathbb{P}^{2}$.

