Math 8306, Algebraic Topology Homework 12 Due in-class on **Wednesday, December 3**

- 1. Show that if a principal bundle $P \to B$ has a section, then there is a homeomorphism to the trivial principal bundle: $P \cong B \times G$ as right *G*-spaces.
- 2. Let G and H be topological groups. Suppose $P_1 \to B$ is a principal Gbundle and $P_2 \to B$ is a principal H-bundle. Show $P_1 \times_B P_2$ (pullback!) is a principal $G \times H$ -bundle.
- 3. Suppose $G \to H$ is a homomorphism of topological groups, and $P \to B$ is a principal *G*-bundle. Show that the mixing construction gives a *principal H*-bundle $P \times_G H \to B$.
- 4. We identified \mathbb{CP}^1 with the space of lines in \mathbb{C}^2 . Associated to this, there is a vector bundle $\xi \to \mathbb{CP}^1$:

$$\xi = \{ (L, v) | L \in \mathbb{CP}^1, v \in L \}.$$

Find an open cover $\{U_{\alpha}\}$ together with transition functions $\{h_{\alpha,\beta} : U_{\alpha} \cap U_{\beta} \to GL_1(\mathbb{C})\}$ to reconstruct the associated principal $GL_1(\mathbb{C})$ -bundle.