Numbered exercises are from Hatcher's "Algebraic Topology."

1. In class, we defined subdivision maps $s_{n}^{i}: \Delta[n+1] \rightarrow \Delta[n] \times[0,1]$ for $0 \leq i \leq n$ by

$$
s_{n}^{i}\left(t_{1}, \cdots, t_{n+1}\right)=\left(\left(t_{1}, \ldots, \widehat{t_{i+1}}, \ldots, t_{n+1}\right), t_{i+1}\right)
$$

. Show that these satisfy the relations

- $s_{n}^{i} d_{n+1}^{j}= \begin{cases}\left(d_{n}^{j-1}, i d\right) \circ s_{n-1}^{i} & \text { if } i<j-1 \\ \left(d_{n}^{j}, i d\right) \circ s_{n-1}^{i-1} & \text { if } i>j\end{cases}$
- $s_{n}^{0} d_{n+1}^{0}=i_{0}$
- $s_{n}^{n} d_{n+1}^{0}=i_{1}$
- $s_{n}^{i-1} d_{n+1}^{i}=s_{n}^{i} d_{n+1}^{i}$ for $i \geq 1$.

Use this to show that the operator $h: C_{n}(X) \rightarrow C_{n+1}(X \times[0,1])$ given by

$$
h\left(\sum a_{\sigma} \sigma\right)=\sum a_{\sigma} \sum_{i=0}^{n}(-1)^{i}(\sigma, i d) \circ s_{n}^{i}
$$

satisfies $\partial h(x)+h \partial \sigma(x)=i_{0}(x)-i_{1}(x)$.
2. Let C_{*} be the chain complex with

$$
C_{n}= \begin{cases}\mathbb{Z} & \text { if } n=1 \\ 0 & \text { otherwise }\end{cases}
$$

Let D_{*} be the chain complex with

$$
D_{n}= \begin{cases}\mathbb{Z} & \text { if } n=0,1 \\ 0 & \text { otherwise }\end{cases}
$$

such that the boundary map $\partial: D_{1} \rightarrow D_{0}$ sends m to $2 m$.
Show that the natural projection $\pi: D_{*} \rightarrow C_{*}$ is a map of chain complexes and it induces the zero map $H_{*}\left(D_{*}\right) \rightarrow H_{*}\left(C_{*}\right)$. Show that there is no chain homotopy h with $\partial h+h \partial=\pi$ (from π to zero).
3. For $Z \subset Y \subset X$ spaces, show that there is a short exact sequence of singular chain complexes

$$
0 \rightarrow C_{*}(Y, Z) \rightarrow C_{*}(X, Z) \rightarrow C_{*}(X, Y) \rightarrow 0 .
$$

What does the resulting long exact sequence of homology groups look like?
4. Hatcher, Exercise 12 on page 132.

