Math 8306, Algebraic Topology Homework 5 Due in-class on **Monday**, October 6

- 1. If X is a space with a chosen basepoint, prove $\tilde{H}_{k+1}(S^1 \wedge X) \cong \tilde{H}_k(X)$ for all $k \ge 0$.
- 2. Compute the following groups.
 - $\operatorname{Tor}_{1}^{\mathbb{Z}}(\mathbb{Z}/n,\mathbb{Z}/m)$ for n,m>0.
 - $\operatorname{Tor}_{k}^{\mathbb{Z}/p^{2}}(\mathbb{Z}/p,\mathbb{Z}/p)$ for $k \geq 0$.
- 3. Compute all groups $H_k(\mathbb{RP}^2; A)$ for any coefficient group A.
- 4. A differential graded algebra is a chain complex A_* with an associative multiplication maps $\cdot : A_p \times A_q \to A_{p+q}$ satisfying the Leibniz rule

$$\partial(x \cdot y) = (\partial x) \cdot y + (-1)^p x \cdot (\partial y)$$

for $x \in A_p, y \in A_q$.

Show that given elements $[x] \in H_p(A)$ and $[y] \in H_q(A)$, we get a welldefined element $[x] \cdot [y]$ in $H_{p+q}(A)$. Show that this makes $H_*(A)$ into a graded ring.