1. Find all $(2,3)$-shuffles α and give formulas for the associated shuffle maps $f_{\alpha}: \Delta[5] \rightarrow \Delta[2] \times \Delta[3]$.
2. Find recursive formulas for $\operatorname{dim}_{\mathbb{Z} / 2} H_{k}\left(\left(R P^{2}\right)^{n} ; \mathbb{Z} / 2\right)$ in terms of k and n.
3. Suppose G is a topological group and $x \in H_{k}(G ; \mathbb{Z})$ where k is odd. Show that $x^{2}=0$ in $H_{2 k}(G, \mathbb{Z})$.
4. We saw in class that $S O(3)$, the group of 3×3 matrices with determinant 1 , is a topological group homeomorphic to $R P^{3}$ and so its homology has a Pontrjagin ring striucture. Show that the square of the generator of $H_{1}(S O(3), \mathbb{Z} / 2)$ is zero. (Hint: Compare with the Pontrjagin ring in homology over \mathbb{Z}.)
