1. Find a pair of chain complexes C_{*} and D_{*} such that the tensor product chain complex $C_{*} \otimes D_{*}$ does not satisfy the Kunneth formula, i.e. there is some n such that

$$
H_{n}\left(C_{*} \otimes D_{*}\right) \neq \bigoplus_{p+q=n} H_{p}\left(C_{*}\right) \otimes H_{q}\left(D_{*}\right) \oplus \bigoplus_{p+q=n-1} \operatorname{Tor}\left(H_{p}\left(C_{*}\right), H_{q}\left(D_{*}\right)\right) .
$$

2. Suppose G is a topological group and X is a topological space with a continuous map $G \times X \rightarrow X$ which is an action of G. Show that $H_{*}(X)$ becomes a left module over the Pontrjagin ring $H_{*}(G)$.
3. Find the homology of the complex Grassmann $\operatorname{Gr}_{\mathbb{C}}(3,5)$.
4. There is a continuous map from one Grassmannian $\operatorname{Gr}(k, n)$ to the next $\operatorname{Gr}(k, n+1)$ by sending a plane $V \subset \mathbb{R}^{n}$ to the plane

$$
\left\{\left(0, x_{1}, \ldots, x_{n}\right) \mid\left(x_{1}, \ldots, x_{n}\right) \in V\right\}
$$

Show that the image consists of a union of Schubert cells, and find the dimension of the smallest cell not in the image.

