Math 8306, Algebraic Topology
Homework 8
Due in-class on Monday, October 27

1. Let X be a Klein bottle:

We can put a Δ-complex structure on X with one vertex p, three edges a, b, c, and two 2 -simplices u, v. Make this Δ-complex structure explicit, and use it to compute $H^{*}(X ; \mathbb{Z} / 2)$ together with the cup product on it.
2. In Hatcher, pg. 131, exercise 8, there is given a description of a lens space formed by gluing together n tetrahedra; let's call this $L(n, 1)$. (The 1 is because we are gluing the "bottom" face of T_{i} to the top face of T_{i+1}.) Compute $H^{*}(L(n, 1) ; \mathbb{Z} / n)$ together with the cup product on it.
3. We know that if X and Y are based spaces, the wedge $X \vee Y$ has

$$
H^{k}(X \vee Y ; R)=H^{k}(X ; R) \oplus H^{k}(Y ; R)
$$

for any $k>0$. Show that under this identification, the cup product is given by

$$
(\alpha, \beta) \cup\left(\alpha^{\prime}, \beta^{\prime}\right)=\left(\alpha \cup \alpha^{\prime}, \beta \cup \beta^{\prime}\right)
$$

