Homework 10
Due in-class on Wednesday, April 15

1. An alternate form of the Adem relations is given by

$$
\sum_{j=0}^{k}\binom{k}{j} S q^{2 n-1-j} S q^{n-k+j}=0
$$

This is valid for $0 \leq k \leq n$. Show that these equations for $k=0,1,2,3$ are equivalent to four of the Adem relations.
2. Show that the following elements commute with each other and square to zero, generating an exterior algebra on three generators.

- $Q_{0}=S q^{1}$
- $Q_{1}=\left[S q^{2}, Q_{0}\right]=S q^{2} S q^{1}+S q^{1} S q^{2}$
(These are referred to as the first two Milnor primitives. The Milnor primitives are defined (in one way) by $Q_{i+1}=\left[S q^{2^{i}}, Q_{i}\right]$, and generate an exterior algebra on infinitely many generators.)

3. Describe $H^{*}\left(\mathbb{C P}^{3} \times \mathbb{C P}^{2}\right)$ together with its action of the mod-2 Steenrod algebra.
4. Find the smallest possible subalgebra of the mod-2 Steenrod algebra generated by $S q^{1}$ and $S q^{2}$.
