Homework 2

Due in-class on Wednesday, February 4

1. Suppose $X=S^{1}$ with base point $*$ and $A \subset S^{1}$ is a subspace (containing $*$) with exactly $k>0$ points. Compute $\pi_{n}(X, A, *)$ for all $n \geq 1$.
2. Find an example of a pair of spaces $A \subset X$ with basepoint $*$ so that the map $\pi_{1}(X, *) \rightarrow \pi_{1}(X, A, *)$ cannot possibly be a group homomorphism.
3. Suppose X is a connected space and let $f: S^{n} \rightarrow X$ be any map. Show that f can be extended to a map $D^{n+1} \rightarrow X$ if and only if the image of f in $\pi_{n}(X, f(*))$ is zero.
4. Suppose f is as in the problem and $g, h: D^{n+1} \rightarrow X$ are two extensions of f, i.e. $\left.g\right|_{S^{n}}=\left.h\right|_{S^{n}}=f$. Construct a "difference" $g-h \in$ $\pi_{n+1}(X, f(*))$, and show that there is a homotopy $H: D^{n+1} \times[0,1] \rightarrow X$ from g to h that fixes the boundary S^{n} if and only if this difference is zero.
