Math 8307, Algebraic Topology II Homework 3 Due in-class on Wednesday, February 11

1. Show that fibrations are closed under retracts: If there is a diagram

of spaces such that both horizontal composites are identity maps, and $X \to Y$ is a (Serre) fibration, show that $A \to B$ is a (Serre) fibration.

- 2. Suppose $U \subset X$ is an open subset, and let j be the inclusion map. Show that the projection $p: M_j \to X$ from the mapping cone of j to X is a Serre fibration. (Hint: Use one of the major theorems from point-set topology.)
- 3. Suppose that $i : A \to X$ is a cofibration, and let M_i be the mapping cylinder. Show that X/A is homotopy equivalent to the mapping cone $M_i/Atimes1$.
- 4. Suppose that $A \to X$ is a cofibration and $f : A \to Y$ is a map. We can form a new space $X \cup_A Y$ by gluing X to Y along A. Show that the map $Y \to X \cup_A Y$ is a cofibration.