
Euler classes for higher gerbes

Chaque gerbe a sa gerbille
Charles-Louis de Secondat, Baron de La Bréde et de Montesquieu

In the late 1970’s Ravenel and Wilson calculated the extraordinary K-
theories of Eilenberg-Mac Lane spaces, and showed in particular that

K(l)∗H(l + 1, Z)

is a one-dimensional formal group of multiplicative type (at least, if p 6=
2?). Strickland and others (cf eg [8]) re-interpreted their results in terms of
exterior powers of the Dieudonné module of K(l)∗H(Z, 2), and more recently
Peterson [6] has extended these results to E-theory.

This seems to define a natural homomorphism

gerbe(l) : H l(X, C×)→ Gl1(K(l)(X) := (1 + K̃(l)0(X))× ,

via
H(C×, l)→ H(Z, l + 1)→ Gl1(K(l))

(cf [1]). When l = 1 we get the first K-theory (mod p) Chern class of a flat
complex line bundle, and when l = 2 we get an invariant of Azumaya algebra
bundles [2]: a kind of Euler clas or support cycle, conceivably related [3] to
physicists’ D-branes.

The classical map
H l+1(X, C×)→ H l(LX, C×)

(ie from gerbes to line bundles, when l = 1) suggests asking how the
transformation above behaves on free loopspaces [5]; more generally, an
orientable codimension one submanifold (eg M0 = ∂M1 ⊂ M1) defines a
Pontrjagin-Thom transfer H∗(M0) → H∗+1(M1) and hence a homomor-
phism H∗(M0)→ H∗(LM1), possibley relevant to higher-dimensional topo-
logical field theories.

Behind this lies the deeper question:

•Are these constructions of any use in the theory of higher gerbes,

as for example in [3 §7.2.2]?
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