18.704 Problem Set 1 Solutions

1. The subgroups of Q_{8} are:

$$
\begin{gather*}
\{1,-1\} \\
\{1, i,-1,-i\} \\
\{1, j,-1,-j\} \\
\{1, k,-1,-k\} \\
Q_{8}
\end{gather*}
$$

The commutator subgroup contains the element

$$
[i, j]=i j i^{-1} j^{-1}=i j(-i)(-j)=(i j)(i j)=k^{2}=-1 .
$$

Similarly $[j, k]=-1$ and $[k, i]=-1$. On the other hand, -1 and 1 commute with all elements of Q_{8}, so $[x,-1]=[x, 1]=1$ for all $x \in Q_{8}$.
Therefore, the commutator subgroup is the subgroup of Q_{8} generated by -1 and 1 , which is $\{1,-1\}$.
2. Since the group \mathbb{C}^{\times}is abelian, any homomorphism $f: Q_{8} \rightarrow \mathbb{C}^{\times}$must send the commutator $-1=[i, j]$ to 1 .
We then must have

$$
f(i)^{2}=f\left(i^{2}\right)=f(-1)=1
$$

because f is a homomorphism. Similarly, $f(j)^{2}=f(k)^{2}=1$. Therefore, f must take i, j, and k to ± 1.
Finally, we must have

$$
f(k)=f(i j)=f(i) f(j)
$$

Therefore, the only homomorphisms $Q_{8} \rightarrow \mathbb{C}^{\times}$are the following.

$$
\begin{array}{llll}
f(\pm 1)=1, & f(\pm i)=1, & f(\pm j)=1, & f(\pm k)=1 \\
f(\pm 1)=1, & f(\pm i)=-1, & f(\pm j)=-1, & f(\pm k)=1 \\
f(\pm 1)=1, & f(\pm i)=-1, & f(\pm j)=1, & f(\pm k)=-1 \\
f(\pm 1)=1, & f(\pm i)=1, & f(\pm j)=-1, & f(\pm k)=-1
\end{array}
$$

3. The order of a double coset $H x K$ does not always divide the size of the group.
Let $G=S_{3}$, the symmetric group on 3 letters, $H=\{e,(12)\}, x=e$, and $K=\{e,(23)\}$. The elements of the double coset are as follows.

$$
\begin{aligned}
H K & =\{h k \mid h \in H, k \in K\} \\
& =\{e \cdot e, e \cdot(23),(12) \cdot e,(12) \cdot(23)\} \\
& =\{e,(23),(12),(123)\}
\end{aligned}
$$

This double coset has 4 elements, but G has 6 elements.

