18.704 Problem Set 2

Due Friday, Mar. 3, at **3pm** in 2-171

- 1. So far in the course, we've only been considering representations over the complex numbers \mathbb{C} , but we could equally consider real representations, which are given by homomorphisms from G to $\operatorname{GL}_n(\mathbb{R})$. What part of the proof of Schur's Lemma (Proposition 4) fails to be true for real representations? Give an example where it fails.
- 2. (T_EX question) Typeset the statement and proof of Proposition 3 into $T_{E}X$. (It doesn't need to be *exactly* the same.) Submit printouts of both your $T_{E}X$ code and the resulting output. On the course website you'll find a link to a file called "example1.tex" that will give you some basic instructions if you've never used it before.
- 3. If χ and λ are functions on a group G, we define their convolution $\chi * \lambda$ by the formula

$$(\chi * \lambda)(g) = \frac{1}{|G|} \sum_{x \in G} \chi(gx^{-1})\lambda(x).$$

Show that if both of χ and λ are class functions on G, so is $\chi * \lambda$.

* (Bonus, not mandatory) Use the orthogonality relations for matrix coefficients from section 2.2 to find a formula for the convolution when χ and λ are the characters of irreducible representations.