18.704 Problem Set 2 Solutions

1. Proposition 4 states that if $\rho: G \rightarrow G L(V)$ is an irreducible representation, any linear transformation $T: V \rightarrow V$ such that $\rho(g) T=T \rho(g)$ is a homothety, i.e. $T=\lambda I$ for some $\lambda \in \mathbb{C}$. This is fails for representations over \mathbb{R}. The reason is that in the proof, we need to find an eigenvalue λ for the linear transformation T, and matrices in $G L_{n}(\mathbb{R})$ don't necessarily have real eigenvalues.
Here is an example where it fails: Let C_{4} be the cyclic group with 4 elements $\left\{1, x, x^{2}, x^{3}\right\}$, and let $\rho: C_{4} \rightarrow G L_{2}(\mathbb{R})$ be the representation

$$
\rho(x)=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] .
$$

In this representation, x^{k} represents rotation by $k \cdot 90^{\circ}$. A nontrivial invariant subspace of this representation would have to be 1-dimensional, but no lines are preserved by rotation by 90°. Therefore, this is an irreducible real representation.
However, $T=\rho(x)$ satisfies $T \rho(g)=\rho(g) T$ for all $g \in G$, and T is a rotation, not a homothety.
2. ($\mathrm{T}_{\mathrm{E}} \mathrm{X}$ question) Here is some example code.

```
{\bf Proposition 3.} {\it Let $\rho: G \to {\rm GL}(V)$ be a
    linear representation of $G$, and let $\chi$ be its character.
    Let $\chi_\sigma^2$ be the character of the symmetric square
    ${\rm Sym}^2(V)$ of $V$ {\rm (cf 1.6)}, and let $\chi_\alpha^2$
    be that of ${\rm Alt}^2(V)$. For each $s \in G$, we have
$$
\chi_\sigma^2(s) = {1 \over 2}(\chi(s)^2 + \chi(s^2))
$$
$$
\chi_\alpha^2(s) = {1 \over 2}(\chi(s)^2 - \chi(s^2))
$$
and $\chi_\sigma^2 + \chi_\alpha^2 = \chi^2$.}
Let $s \in G$. A basis $(e_i)$ of $V$ can be chosen consisting of
{\it eigenvectors} for $\rho_s$; this follows for example from the
fact that $\rho_s$ can be represented by a {\it unitary} matrix,
cf. 1.3. We have then $\rho_s e_i = \lambda_i e_i$ with $\lambda_i
\in {\bf C}$, and so
$$
\chi(s) = \sum \lambda_i,\hskip 2pc \chi(s^2) = \sum \lambda_i^2.
$$
On the other hand, we have
$$
```

```
(\rho_s \otimes \rho_s)(e_i \cdot e_j + e_j \cdot e_i) = \lambda_i
\lambda_j \cdot (e_i \cdot e_j + e_j \cdot e_i),
$$
$$
(\rho_s \otimes \rho_s)(e_i \cdot e_j - e_j \cdot e_i) = \lambda_i
\lambda_j \cdot (e_i \cdot e_j - e_j \cdot e_i),
$$
hence
$$
\chi_\sigma^2(s) = \sum_{i \leq j} \lambda_i \lambda_j = \sum
\lambda_i^2 + \sum_{i < j} \lambda_i \lambda_j = {1 \over 2}(\sum
\lambda_i)^2 + {1 \over 2}\sum \lambda_i^2
$$
$$
\chi_\alpha^2(s) = \sum_{i < j} \lambda_i \lambda_j =
{1 \over 2}(\sum \lambda_i)^2 - {1 \over 2}\sum \lambda_i^2
$$
The proposition follows.\hfill $\square$
```

3. If χ and λ are both class functions on G, we have

$$
\begin{aligned}
(\chi * \lambda)\left(h g h^{-1}\right) & =\frac{1}{|G|} \sum_{x \in G} \chi\left(h g h^{-1} x^{-1}\right) \lambda(x) \\
& =\frac{1}{|G|} \sum_{x \in G} \chi\left(h^{-1}\left(h g h^{-1} x^{-1}\right) h\right) \lambda(x) \\
& =\frac{1}{|G|} \sum_{x \in G} \chi\left(g h^{-1} x^{-1} h\right) \lambda(x) .
\end{aligned}
$$

Substituting $y=h^{-1} x h$ in the summation, we find

$$
\begin{aligned}
(\chi * \lambda)\left(h g h^{-1}\right) & =\frac{1}{|G|} \sum_{y \in G} \chi\left(g y^{-1}\right) \lambda\left(h y h^{-1}\right) \\
& =\frac{1}{|G|} \sum_{y \in G} \chi\left(g y^{-1}\right) \lambda(y) \\
& =(\chi * \lambda)(g)
\end{aligned}
$$

Therefore, $\chi * \lambda$ is a class function, as desired.

