18.704 Problem Set 3

Due Friday, Mar. 17, at $\mathbf{3} \mathbf{p m}$ in 2-171

At least one of your answers must be typeset in $\mathbf{T}_{\mathbf{E}} \mathbf{X}$.

1. Serre, Exercise 3.3.
2. Compute the character table of the following group of order 20.

$$
\left\langle x, y \mid x^{5}=y^{4}=e, y x y^{-1}=x^{2}\right\rangle
$$

3. Suppose a group G acts on a set X, and $|X|>1$. We say that this action is doubly transitive if for any two pairs $(x, y),\left(x^{\prime}, y^{\prime}\right)$ of points of X such that $x \neq y$ and $x^{\prime} \neq y^{\prime}$, there is an element $g \in G$ such that $(g x, g y)=\left(x^{\prime}, y^{\prime}\right)$. Show that if G acts doubly transitively on X with character χ, then

$$
\begin{aligned}
\langle\chi, \chi\rangle & =2, \text { and } \\
\langle\chi, 1\rangle & =1,
\end{aligned}
$$

where 1 is the trivial character. What does this tell you about the associated representation?

