18.704 Problem Set 3 Solutions

- 1. \hat{G} is an abelian group, with identity element 1 (the character of the trivial representation), as follows. For all $g \in G$ we have the following.
 - $(\mathbf{1} \cdot \chi)(g) = \mathbf{1}(g)\chi(g) = 1\chi(g) = \chi(g)$, so $\mathbf{1} \cdot \chi = \chi$.
 - $[\chi_1 \cdot (\chi_2 \cdot \chi_3)](g) = \chi_1(g)\chi_2(g)\chi_3(g) = [(\chi_1 \cdot \chi_2) \cdot \chi_3](g)$, so $\chi_1(\chi_2\chi_3) = (\chi_1\chi_2)\chi_3$.
 - $(\chi_1 \cdot \chi_2)(g) = \chi_1(g)\chi_2(g) = \chi_2(g)\chi_1(g) = (\chi_2 \cdot \chi_1)(g)$, so $\chi_1\chi_2 = \chi_2\chi_1$.
 - If χ is a character, so is its complex conjugate $\bar{\chi}$, and $(\chi \cdot \bar{\chi})(g) = |\chi(g)|^2 = 1 = \mathbf{1}(g)$ since $\chi(g)$ is a root of unity, so $\chi \bar{\chi} = \mathbf{1}$.

For any $x \in G$, define $ev_x : \hat{G} \to \mathbb{C}^{\times}$ by $ev_x(\chi) = \chi(x)$. The map ev_x is a group homomorphism, as follows.

- $ev_x(1) = 1(x) = 1$.
- $ev_x(\chi_1 \cdot \chi_2) = (\chi_1 \cdot \chi_2)(x) = \chi_1(x)\chi_2(x) = ev_x(\chi_1)ev_x(\chi_2).$

Therefore, ev_x is an element of \hat{G} for any $x \in G$.

The map $ev: G \to \hat{G}$ is an injective group homomorphism, as follows. (I am too lazy to figure out how to do a double-hat nicely today.)

- $ev_1(\chi) = \chi(1) = 1$, so ev_1 is the trivial character of \hat{G} .
- $ev_{xy}(\chi) = \chi(xy) = \chi(x)\chi(y) = ev_x(\chi)ev_y(\chi) = (ev_x \cdot ev_y)(\chi)$, so as characters of \hat{G} we have $ev_x \cdot ev_y = ev_{xy}$.
- If $ev_x = 1$, then $1 = ev_x(\chi) = \chi(x)$ for all χ , which would imply x = 1.

Since G is abelian, and the number of irreducible representations of G is equal to the number of conjugacy classes of G, \hat{G} has the same size as G. Similarly, \hat{G} has the same size as \hat{G} , so the map $G \to \hat{G}$ is an isomorphism.

2. The group G of order 20

$$\langle x, y \mid x^5 = y^4 = e, yxy^{-1} = x^2 \rangle$$

has the following conjugacy classes.

$$\{e\}, \{x, x^2, x^3, x^4\}, \{yx^k\}, \{y^2x^k\}, \{y^3x^k\}$$

We also have $[y, x] = yxy^{-1}x^{-1} = x$, so the commutator subgroup contains x; in fact, it equals $\langle x \rangle$. The subgroup generated by x is normal and the quotient $G/\langle x \rangle$ is isomorphic to $\mathbb{Z}/4$.

Therefore, there are 5 irreducible representations, 4 of which are 1-dimensional. If the last one is *d*-dimensional, we must have $20 = 1^2 + 1^2 + 1^2 + 1^2 + d^2$, so d = 4.

The four 1-dimensional representations are given by

$$x^n y^m \mapsto e^{2\pi i km/4}$$

for k = 0, 1, 2, 3. This gives us the first 4 rows of the character table. The last row we can cheat and get for free by using the character orthogonality relations.

	e	x^k	yx^k	$y^2 x^k$	$y^3 x^k$
χ_1	1	1	1	1	1
χ_2	1	1	i	$^{-1}$	-i
χ_3	1	1	$^{-1}$	1	-1
χ_4	1	1	-i	-1	i
χ_5	4	-1	0	0	0

3. Suppose that G acts on X doubly transitively, with permutation character $\chi_X.$

$$\begin{aligned} \langle \chi_X, \mathbf{1} \rangle &= \frac{1}{|G|} \sum_{g \in G} \chi(g) \\ &= \frac{1}{|G|} \sum_{g \in G} \sum_{\substack{x \in X \\ gx = x}} 1 \\ &= \frac{1}{|G|} \sum_{x \in X} \sum_{\substack{g \in G \\ gx = x}} 1 \\ &= \frac{1}{|G|} \sum_{x \in X} |I_x| \end{aligned}$$

Here I_x is the stabilizer of X. Since

$$I_{gx} = gI_x g^{-1},$$

and the action of G is transitive on X, $|I_x|$ is the same for all $x \in X$. We then get the following.

$$\langle \chi_X, \mathbf{1} \rangle = \frac{1}{|G|} |I_x| \sum_{x \in X} 1$$
$$= \frac{1}{|G|} |I_x| |X|$$
$$= 1$$

$$\begin{aligned} \langle \chi_X, \chi_X \rangle &= \frac{1}{|G|} \sum_{g \in G} \chi(g)^2 \\ &= \frac{1}{|G|} \sum_{g \in G} \left(\sum_{\substack{x \in X \\ gx = x}} 1 \right)^2 \\ &= \frac{1}{|G|} \sum_{g \in G} \sum_{\substack{x \in X \\ gx = x}} \sum_{\substack{y \in X \\ gy = y}} 1 \\ &= \frac{1}{|G|} \sum_{g \in G} \sum_{\substack{(x,y) \in X \times X \\ (gx,gy) = (x,y)}} 1 \\ &= \frac{1}{|G|} \sum_{g \in G} \chi_{X \times X}(g) \\ &= \langle \chi_{X \times X}, \mathbf{1} \rangle \end{aligned}$$

Here $\chi_{X \times X}$ is the character of G acting on $X \times X$. We have

$$X\times X=\{(x,x)|x\in X\}\cup\{(x,y)|x\neq y\}=Y\cup Z.$$

Both Y and Z are G-stable, and so $\chi_{X \times X} = \chi_Y + \chi_Z$. Since |X| > 1, both of these sets are nonempty.

The action of G on Y is transitive because the action on X is transitive. By assumption, the action of G on Z is also transitive. Therefore

Therefore,

$$\langle \chi_X, \chi_X \rangle = \langle \chi_Y + \chi_Z, \mathbf{1} \rangle$$

= $\langle \chi_Y, \mathbf{1} \rangle + \langle \chi_Z, \mathbf{1} \rangle$
= $1 + 1 = 2.$