18.704 Problem Set 3 Solutions

1. \hat{G} is an abelian group, with identity element $\mathbf{1}$ (the character of the trivial representation), as follows. For all $g \in G$ we have the following.

- $(\mathbf{1} \cdot \chi)(g)=\mathbf{1}(g) \chi(g)=1 \chi(g)=\chi(g)$, so $\mathbf{1} \cdot \chi=\chi$.
- $\left[\chi_{1} \cdot\left(\chi_{2} \cdot \chi_{3}\right)\right](g)=\chi_{1}(g) \chi_{2}(g) \chi_{3}(g)=\left[\left(\chi_{1} \cdot \chi_{2}\right) \cdot \chi_{3}\right](g)$, so $\chi_{1}\left(\chi_{2} \chi_{3}\right)=$ $\left(\chi_{1} \chi_{2}\right) \chi_{3}$.
- $\left(\chi_{1} \cdot \chi_{2}\right)(g)=\chi_{1}(g) \chi_{2}(g)=\chi_{2}(g) \chi_{1}(g)=\left(\chi_{2} \cdot \chi_{1}\right)(g)$, so $\chi_{1} \chi_{2}=$ $\chi_{2} \chi_{1}$.
- If χ is a character, so is its complex conjugate $\bar{\chi}$, and $(\chi \cdot \bar{\chi})(g)=$ $|\chi(g)|^{2}=1=\mathbf{1}(g)$ since $\chi(g)$ is a root of unity, so $\chi \bar{\chi}=\mathbf{1}$.
For any $x \in G$, define $e v_{x}: \hat{G} \rightarrow \mathbb{C}^{\times}$by $e v_{x}(\chi)=\chi(x)$. The map $e v_{x}$ is a group homomorphism, as follows.
- $e v_{x}(\mathbf{1})=\mathbf{1}(x)=1$.
- $e v_{x}\left(\chi_{1} \cdot \chi_{2}\right)=\left(\chi_{1} \cdot \chi_{2}\right)(x)=\chi_{1}(x) \chi_{2}(x)=e v_{x}\left(\chi_{1}\right) e v_{x}\left(\chi_{2}\right)$.

Therefore, $e v_{x}$ is an element of $\hat{\hat{G}}$ for any $x \in G$.
The map $e v: G \rightarrow \hat{\hat{G}}$ is an injective group homomorphism, as follows. (I am too lazy to figure out how to do a double-hat nicely today.)

- $e v_{1}(\chi)=\chi(1)=1$, so $e v_{1}$ is the trivial character of \hat{G}.
- $e v_{x y}(\chi)=\chi(x y)=\chi(x) \chi(y)=e v_{x}(\chi) e v_{y}(\chi)=\left(e v_{x} \cdot e v_{y}\right)(\chi)$, so as characters of \hat{G} we have $e v_{x} \cdot e v_{y}=e v_{x y}$.
- If $e v_{x}=1$, then $1=e v_{x}(\chi)=\chi(x)$ for all χ, which would imply $x=1$.

Since G is abelian, and the number of irreducible representations of G is equal to the number of conjugacy classes of G, \hat{G} has the same size as G. Similarly, $\hat{\hat{G}}$ has the same size as \hat{G}, so the $\operatorname{map} G \rightarrow \hat{\hat{G}}$ is an isomorphism.
2. The group G of order 20

$$
\left\langle x, y \mid x^{5}=y^{4}=e, y x y^{-1}=x^{2}\right\rangle
$$

has the following conjugacy classes.

$$
\{e\},\left\{x, x^{2}, x^{3}, x^{4}\right\},\left\{y x^{k}\right\},\left\{y^{2} x^{k}\right\},\left\{y^{3} x^{k}\right\}
$$

We also have $[y, x]=y x y^{-1} x^{-1}=x$, so the commutator subgroup contains x; in fact, it equals $\langle x\rangle$. The subgroup generated by x is normal and the quotient $G /<x>$ is isomorphic to $\mathbb{Z} / 4$.
Therefore, there are 5 irreducible representations, 4 of which are 1-dimensional. If the last one is d-dimensional, we must have $20=1^{2}+1^{2}+1^{2}+1^{2}+d^{2}$, so $d=4$.

The four 1-dimensional representations are given by

$$
x^{n} y^{m} \mapsto e^{2 \pi i k m / 4}
$$

for $k=0,1,2,3$. This gives us the first 4 rows of the character table. The last row we can cheat and get for free by using the character orthogonality relations.

	e	x^{k}	$y x^{k}$	$y^{2} x^{k}$	$y^{3} x^{k}$
χ_{1}	1	1	1	1	1
χ_{2}	1	1	i	-1	$-i$
χ_{3}	1	1	-1	1	-1
χ_{4}	1	1	$-i$	-1	i
χ_{5}	4	-1	0	0	0

3. Suppose that G acts on X doubly transitively, with permutation character χ_{X}.

$$
\begin{aligned}
\left\langle\chi_{X}, \mathbf{1}\right\rangle & =\frac{1}{|G|} \sum_{g \in G} \chi(g) \\
& =\frac{1}{|G|} \sum_{g \in G} \sum_{\substack{x \in X \\
g x=x}} 1 \\
& =\frac{1}{|G|} \sum_{x \in X} \sum_{\substack{g \in G \\
g x=x}} 1 \\
& =\frac{1}{|G|} \sum_{x \in X}\left|I_{x}\right|
\end{aligned}
$$

Here I_{x} is the stabilizer of X. Since

$$
I_{g x}=g I_{x} g^{-1}
$$

and the action of G is transitive on $X,\left|I_{x}\right|$ is the same for all $x \in X$. We then get the following.

$$
\begin{aligned}
\left\langle\chi_{X}, \mathbf{1}\right\rangle & =\frac{1}{|G|}\left|I_{x}\right| \sum_{x \in X} 1 \\
& =\frac{1}{|G|}\left|I_{x}\right||X| \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
\left\langle\chi_{X}, \chi_{X}\right\rangle & =\frac{1}{|G|} \sum_{g \in G} \chi(g)^{2} \\
& =\frac{1}{|G|} \sum_{g \in G}\left(\sum_{\substack{x \in X \\
g x=x}} 1\right)^{2} \\
& =\frac{1}{|G|} \sum_{g \in G} \sum_{\substack{x \in X \\
g x=x}} \sum_{y \in X} 1 \\
& =\frac{1}{|G|} \sum_{g \in G=y} \sum_{\substack{(x, y) \in X \times X \\
(g x, g y)=(x, y)}} 1 \\
& =\frac{1}{|G|} \sum_{g \in G} \chi_{X \times X}(g) \\
& =\left\langle\chi_{X \times X}, \mathbf{1}\right\rangle
\end{aligned}
$$

Here $\chi_{X \times X}$ is the character of G acting on $X \times X$.
We have

$$
X \times X=\{(x, x) \mid x \in X\} \cup\{(x, y) \mid x \neq y\}=Y \cup Z
$$

Both Y and Z are G-stable, and so $\chi_{X \times X}=\chi_{Y}+\chi_{Z}$. Since $|X|>1$, both of these sets are nonempty.
The action of G on Y is transitive because the action on X is transitive. By assumption, the action of G on Z is also transitive.
Therefore,

$$
\begin{aligned}
\left\langle\chi_{X}, \chi_{X}\right\rangle & =\left\langle\chi_{Y}+\chi_{Z}, \mathbf{1}\right\rangle \\
& =\left\langle\chi_{Y}, \mathbf{1}\right\rangle+\left\langle\chi_{Z}, \mathbf{1}\right\rangle \\
& =1+1=2 .
\end{aligned}
$$

