## 18.704 Problem Set 4 Solutions

1.  $S_3$  has the following 6 subgroups:

 $\{e\}, \{e, (12)\}, \{e, (13)\}, \{e, (23)\}, \{e, (123), (132)\}, S_3.$ 

Here are their character tables. (The three groups of size 2 all have the same character tables.) Write  $H = \{e, (12)\}$  and  $K = \{e, (123), (132)\}$ .

|                                 |                                                           | 1                    | $\begin{array}{c c} e \\ e \\ L \\ \end{array} \begin{array}{c} 1 \\ \end{array}$ | -                                                               |
|---------------------------------|-----------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------|
|                                 | -                                                         | H<br>1<br>$\epsilon$ | e (1)<br>1 1<br>1 -                                                               | 2)<br>1                                                         |
|                                 | $\begin{array}{c} K \\ 1 \\ \chi_2 \\ \chi_3 \end{array}$ | e<br>1<br>1<br>1     | $(123)$ $1$ $\omega$ $\omega^2$                                                   | $\begin{array}{c} (132) \\ 1 \\ \omega^2 \\ \omega \end{array}$ |
| (Here $\omega = e^{\pi i/3}$ .) | $S_3$<br>1<br>sgn<br>T                                    | e $1$ $1$ $2$        | (12)<br>1<br>-1<br>0                                                              | (123)<br>1<br>1<br>-1                                           |

Here are the characters of the induced representations to  $S_3$ .

| $S_3$                                                 | e | (12) | (123)   |
|-------------------------------------------------------|---|------|---------|
| $\operatorname{Ind}_{\{e\}}^{S_3}(1)$                 | 6 | 0    | 0       |
| $\operatorname{Ind}_{H}^{S_{3}}(1)$                   | 3 | 1    | 0       |
| $\operatorname{Ind}_{H}^{\overline{S}_{3}}(\epsilon)$ | 3 | -1   | 0       |
| $\operatorname{Ind}_{K}^{S_{3}}(1)$                   | 2 | 0    | 2       |
| $\operatorname{Ind}_{K}^{S_{3}}(\chi_{2})$            | 2 | 0    | $^{-1}$ |
| $\operatorname{Ind}_{K}^{S_{3}}(\chi_{3})$            | 2 | 0    | -1      |

Writing these characters as sums of irreducible characters, we get the following.  $\mathbf{L} = \sum_{i=1}^{N_{i}} \mathbf{L} + \sum_{i=1}^{N_{i}} \mathbf{L} +$ 

$$\begin{array}{ll} \operatorname{Ind}_{\{e\}}^{S_3} &= \mathbf{1} + \operatorname{sgn} + 2T \\ \operatorname{Ind}_{H}^{S_3}(\mathbf{1}) &= \mathbf{1} + T \\ \operatorname{Ind}_{H}^{S_3}(\epsilon) &= \operatorname{sgn} + T \\ \operatorname{Ind}_{K}^{S_3}(\mathbf{1}) &= \mathbf{1} + \operatorname{sgn} \\ \operatorname{Ind}_{K}^{S_3}(\chi_2) &= T \\ \operatorname{Ind}_{K}^{S_3}(\chi_3) &= T \end{array}$$

2. If  $f_1, f_2 \in W, \alpha \in \mathbb{C}$ , then we have the following.

$$\begin{aligned} (\alpha f_1 + f_2)(hx) &= \alpha f_1(hx) + f_2(hx) \\ &= & \alpha \rho(h) f_1(x) + \rho(h) f_2(x) \\ &= & \rho(h)(\alpha f_1(x) + f_2(x)) \\ &= & \rho(h)(\alpha f_1 + f_2)(x). \end{aligned}$$

Therefore,  $\alpha f_1 + f_2 \in W$ , as desired.

If  $g \in G, f \in W$ , then we have the following.

$$\begin{aligned} (g \cdot f)(hx) &= f(hxg^{-1}) \\ &= \rho(h)f(xg^{-1}) \\ &= \rho(h)(g \cdot f)(x). \end{aligned}$$

Therefore,  $g \cdot f \in W$ .

To show that this gives a representation of G on W, we need to show the identities  $e \cdot f = f$  and  $g \cdot (g' \cdot f) = (gg') \cdot f$ . Since

$$(e \cdot f)(x) = f(xe^{-1}) = f(x),$$

we have  $e \cdot f = f$ . Also, we have the following.

$$\begin{array}{rcl} (g \cdot (g' \cdot f))(x) &=& (g' \cdot f)(xg^{-1}) \\ &=& f(xg^{-1}(g')^{-1}) \\ &=& f(x(g'g)^{-1}) \\ &=& (g'g) \cdot f(x). \end{array}$$

At this point, we realize that I made a **MISTAKE** when I assigned this pset; this doesn't give an action of G on W because it is backwards! Instead, we should have defined the group action via

$$(g \cdot f)(x) = f(xg)$$

instead!

3. Here is the starting point for our character table, whose rows are the characters of  $S_5$  acting on tabloids.

|   |     | (10) | (15) | (20) | (20) |      | (24) |
|---|-----|------|------|------|------|------|------|
|   | (1) | (10) | (10) | (20) | (20) | (30) | (24) |
|   | 1   | 1    | 1    | 1    | 1    | 1    | 1    |
|   | 5   | 3    | 1    | 2    | 0    | 1    | 0    |
|   | 10  | 4    | 2    | 1    | 1    | 0    | 0    |
|   | 20  | 6    | 0    | 2    | 0    | 0    | 0    |
|   | 30  | 6    | 2    | 0    | 0    | 0    | 0    |
|   | 60  | 6    | 0    | 0    | 0    | 0    | 0    |
| Ħ | 120 | 0    | 0    | 0    | 0    | 0    | 0    |

First, we kill copies of the trivial representation  $\square \blacksquare \square$  , which occur once in each lower row.

| (1) | (10) | (15) | $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ (20) \end{array}$ | $\bigoplus_{(20)}$ | (30) | (24) |
|-----|------|------|-------------------------------------------------------------------------|--------------------|------|------|
| 1   | 1    | 1    | 1                                                                       | 1                  | 1    | 1    |
| 4   | 2    | 0    | 1                                                                       | -1                 | 0    | -1   |
| 9   | 3    | 1    | 0                                                                       | 0                  | -1   | -1   |
| 19  | 5    | -1   | 1                                                                       | -1                 | -1   | -1   |
| 29  | 5    | 1    | -1                                                                      | -1                 | -1   | -1   |
| 59  | 5    | -1   | -1                                                                      | -1                 | -1   | -1   |
| 119 | -1   | -1   | -1                                                                      | -1                 | -1   | -1   |

Then we kill off copies of the now-irreducible representation  $\square$ , which occurs once in  $\square$ , twice in  $\square$ , twice in  $\square$ , three times in  $\square$ , and four times in  $\square$ .



Next, the irreducible  $\square$  occurs once in  $\square$ , twice in  $\square$ , three times in  $\square$ , and five times in  $\square$ .





|   |   | (10) | (15) | $\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ (20) \end{bmatrix}$ | (20) | (30) | (24) |
|---|---|------|------|-----------------------------------------------------------|------|------|------|
|   | 1 | 1    | 1    | 1                                                         | 1    | 1    | 1    |
|   | 4 | 2    | 0    | 1                                                         | -1   | 0    | -1   |
|   | 5 | 1    | 1    | -1                                                        | 1    | -1   | 0    |
|   | 6 | 0    | -2   | 0                                                         | 0    | 0    | 1    |
|   | 5 | -1   | 1    | -1                                                        | -1   | 1    | 0    |
|   | 4 | -2   | 0    | 1                                                         | 1    | 0    | -1   |
| H | 1 | -1   | 1    | 1                                                         | -1   | -1   | 1    |

(And the chances of us getting the sign representation down at the bottom by *accident* are pretty low, so I think the arithmetic worked out.)