18.704 Problem Set 4 Solutions

1. S_{3} has the following 6 subgroups:

$$
\{e\},\{e,(12)\},\{e,(13)\},\{e,(23)\},\{e,(123),(132)\}, S_{3}
$$

Here are their character tables. (The three groups of size 2 all have the same character tables.) Write $H=\{e,(12)\}$ and $K=\{e,(123),(132)\}$.

H	e	(12)
$\mathbf{1}$	1	1
ϵ	1	-1

K	e	(123)	(132)
$\mathbf{1}$	1	1	1
χ_{2}	1	ω	ω^{2}
χ_{3}	1	ω^{2}	ω

(Here $\omega=e^{\pi i / 3}$.)

S_{3}	e	(12)	(123)
$\mathbf{1}$	1	1	1
sgn	1	-1	1
T	2	0	-1

Here are the characters of the induced representations to S_{3}.

S_{3}	e	(12)	(123)
$\operatorname{Ind}_{\{e\}}^{S_{3}}(\mathbf{1})$	6	0	0
$\operatorname{Ind}_{H}^{S_{3}}(\mathbf{1})$	3	1	0
$\operatorname{Ind}_{H}^{S_{3}}(\epsilon)$	3	-1	0
$\operatorname{Ind}_{K}^{S_{3}}(\mathbf{1})$	2	0	2
$\operatorname{Ind}_{K}^{S_{3}}\left(\chi_{2}\right)$	2	0	-1
$\operatorname{Ind}_{K}^{S_{3}}\left(\chi_{3}\right)$	2	0	-1

Writing these characters as sums of irreducible characters, we get the following.

$$
\begin{array}{ll}
\operatorname{Ind}_{\{e\}}^{S_{3}} & =\mathbf{1}+\operatorname{sgn}+2 T \\
\operatorname{Ind}_{H}^{S_{3}}(\mathbf{1}) & =\mathbf{1}+T \\
\operatorname{Ind}_{H}^{S_{3}}(\epsilon) & =\operatorname{sgn}+T \\
\operatorname{Ind}_{K}^{S_{3}}(\mathbf{1}) & =\mathbf{1}+\operatorname{sgn} \\
\operatorname{Ind}_{K}^{S_{3}}\left(\chi_{2}\right) & =T \\
\operatorname{Ind}_{K}^{S_{3}}\left(\chi_{3}\right) & =T
\end{array}
$$

2. If $f_{1}, f_{2} \in W, \alpha \in \mathbb{C}$, then we have the following.

$$
\begin{array}{rlrl}
\left(\alpha f_{1}+f_{2}\right)(h x)=\alpha f_{1}(h x) & +f_{2}(h x) & \\
= & & \alpha \rho(h) f_{1}(x)+\rho(h) f_{2}(x) \\
= & \rho(h)\left(\alpha f_{1}(x)+f_{2}(x)\right) \\
& = & \rho(h)\left(\alpha f_{1}+f_{2}\right)(x)
\end{array}
$$

Therefore, $\alpha f_{1}+f_{2} \in W$, as desired.
If $g \in G, f \in W$, then we have the following.

$$
\begin{array}{rll}
(g \cdot f)(h x)=f\left(h x g^{-1}\right) & \\
& = & \rho(h) f\left(x g^{-1}\right) \\
& = & \rho(h)(g \cdot f)(x)
\end{array}
$$

Therefore, $g \cdot f \in W$.
To show that this gives a representation of G on W, we need to show the identities $e \cdot f=f$ and $g \cdot\left(g^{\prime} \cdot f\right)=\left(g g^{\prime}\right) \cdot f$. Since

$$
(e \cdot f)(x)=f\left(x e^{-1}\right)=f(x)
$$

we have $e \cdot f=f$. Also, we have the following.

$$
\begin{aligned}
\left(g \cdot\left(g^{\prime} \cdot f\right)\right)(x) & =\left(g^{\prime} \cdot f\right)\left(x g^{-1}\right) \\
& =f\left(x g^{-1}\left(g^{\prime}\right)^{-1}\right) \\
& =f\left(x\left(g^{\prime} g\right)^{-1}\right) \\
& =\left(g^{\prime} g\right) \cdot f(x)
\end{aligned}
$$

At this point, we realize that I made a MISTAKE when I assigned this pset; this doesn't give an action of G on W because it is backwards! Instead, we should have defined the group action via

$$
(g \cdot f)(x)=f(x g)
$$

instead!
3. Here is the starting point for our character table, whose rows are the characters of S_{5} acting on tabloids.

	(1)	$\underset{(10)}{\forall}$	(15)	$\begin{aligned} & \square \\ & \square \\ & (20) \end{aligned}$	$\underset{(20)}{\square}$	$\begin{gathered} \square \cdot(30) \end{gathered}$	$\begin{array}{r} \square \square \square \\ (24) \\ \hline \end{array}$
-11]	,	1	1	1	1	1	-
$\square \square$	5	3	1	2	0	1	0
\square	10	4	2	1	1	0	0
	20	6	0	2	0	0	0
	30	6	2	0	0	0	0
	60	6	0	0	0	0	0
B	120	0	0	0	0	0	0

First, we kill copies of the trivial representation $\square \square \square \square$, which occur once in each lower row.

	(1)	$\underset{(10)}{\forall}$	$\underset{(15)}{\forall}$	$\begin{aligned} & \underset{(20)}{\square} \\ & \hline \end{aligned}$	$\underset{(20)}{\square}$	$\square \square \square$ (30)	$\square \square \square$ (24)
[111]	1	1	1	1	1	1	1
$\square \square$	4	2	0	1	-1	0	-1
\square	9	3	1	0	0	-1	-1
	19	5	-1	1	-1	-1	-1
\square	29	5	1	-1	-1	-1	-1
θ	59	5	-1	-1	-1	-1	-1
θ	119	-1	-1	-1	-1	-1	-1

Then we kill off copies of the now-irreducible representation \square^{\square}, which occurs once in \square, twice in | \square |
| :---: |
| , twice in |
| \square | , three times in \(\begin{aligned} \& B

\& , and four\end{aligned}\) times in θ

Next, the irreducible \square occurs once in | \square |
| :--- |
| \square | , twice in \(\begin{aligned} \& \square

\& , three times in\end{aligned}\) θ, and five times in θ.

	(1)	$\stackrel{\oplus}{\boxminus}$	$\underset{\substack{\boxminus \\(15)}}{ }$	$\begin{aligned} & \forall \\ & \forall \\ & (20) \end{aligned}$	$\underset{(20)}{\bigoplus}$	(30)	$\square \square \square$ (24)
[11]	1	1		1	1	1	1
$\square \square$	4	2	0	1	-1	0	-1
\square	5	1	1	-1	1	-1	0
	6	0	-2	0	0	0	1
\sharp	11	-1	-1	-1	-1	1	1
日	32	-4	-4	-1	-1	2	2
日	78	-14	-6	0	-2	4	3

The irreducible \square^{\square} occurs once in $\#$, three times in $\begin{aligned} & \text {, and six times }\end{aligned}$ in \square.

	B (1)	$\underset{(10)}{\forall}$	$\begin{array}{r} 母 \\ (15) \end{array}$	$\begin{aligned} & \square \\ & \square \\ & (20) \end{aligned}$	$\underset{(20)}{\square}$	${ }_{(30)}^{\square \square \square}$	
- [1]	1	1	1	1	1	1	1
$\square \square$	4	2	0	1	-1	0	-1
\square	5	1	1	-1	1	-1	0
	6	0	-2	0	0	0	1
\square	5	-1	1	-1	-1	1	0
日	14	-4	2	-1	-1	2	-1
θ	42	-14	6	0	-2	4	-3

	(1)	$\begin{gathered} \boxminus \\ \exists \\ (10) \end{gathered}$	$\begin{gathered} \sharp \\ (15) \end{gathered}$	$\begin{aligned} & \square \square \\ & \square \\ & (20) \end{aligned}$	$\underset{(20)}{\square}$	$\square \square$ (30)	$\begin{array}{r} \text { ㄷा० } \\ (24) \\ \hline \end{array}$
	1	1	1	1	1	1	1
$\square \square$	4	2	0	1	-1	0	-1
\square	5	1	1	-1	1	-1	0
	6	0	-2	0	0	0	1
\square	5	-1	1	-1	-1	1	0
\square	4	-2	0	1	1	0	-1
\square	17	-9	1	5	3	-1	-3

	$\begin{array}{r} \text { 日 } \\ \hline \end{array}$	$\begin{gathered} \boxminus \\ \boxminus \\ (10) \end{gathered}$	$\begin{array}{r} \exists \\ (15) \\ \hline 1 \end{array}$	$\begin{aligned} & \square \square \\ & \square \\ & (20) \end{aligned}$	$\begin{aligned} & \square \\ & (20) \end{aligned}$	$\square \square \square$ (30)	$\begin{array}{r} \square \square \square \\ (24) \\ \hline \end{array}$
प1]1	1	1	1	1	1	1	1
$\square \square$	4	2	0	1	-1	0	-1
\square	5	1	1	-1	1	-1	0
\square	6	0	-2	0	0	0	1
\square	5	-1	1	-1	-1	1	0
-	4	-2	0	1	1	0	-1
日	1	-1	1	1	-1	-1	1

(And the chances of us getting the sign representation down at the bottom by accident are pretty low, so I think the arithmetic worked out.)

