18.704 Problem Set 5

Due Friday, May 12, at $\mathbf{3} \mathbf{p m}$ in 2-171

At least one of your answers must be typeset in $\mathbf{T}_{\mathbf{E}} X$.

(You don't need to submit the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ code.)

1. Suppose $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$ is a partition, and $\mu=\lambda^{t}$ is its conjugate partition. Show that the only way to fill in the table

	μ_{1}	μ_{2}	μ_{3}	\ldots	μ_{r}
λ_{1}					
λ_{2}					
λ_{3}					
\vdots					
λ_{s}					

with zeros and ones, so that the row sums equal the λ_{i} and the column sums equal the μ_{i}, is to "fill in the Young diagram." (Hint: Try induction on the number of rows.)
2. Suppose λ and λ^{\prime} are any two partitions. Recall that $\lambda \leq \lambda^{\prime}$ if and only if the following equations are true.

$$
\begin{aligned}
\lambda_{1} & \leq \lambda_{1}^{\prime} \\
\lambda_{1}+\lambda_{2} & \leq \lambda_{1}^{\prime}+\lambda_{2}^{\prime} \\
\lambda_{1}+\lambda_{2}+\lambda_{3} & \leq \lambda_{1}^{\prime}+\lambda_{2}^{\prime}+\lambda_{3}^{\prime}
\end{aligned}
$$

Sketch a proof that $\lambda \leq \lambda^{\prime}$ if and only if we can obtain the Young diagram for λ by taking the Young diagram for λ^{\prime} and moving boxes downwards to lower rows.
3. Suppose that we have partitions λ and μ, and that there is a way to fill in the table

	μ_{1}	μ_{2}	μ_{3}	\ldots	μ_{r}
λ_{1}					
λ_{2}					
λ_{3}					
\vdots					
λ_{s}					

with zeros and ones so that the row sums are the λ_{i} and the column sums are the μ_{i}. Using the result from the last question, show that $\lambda \leq \mu^{t}$. (Hint: What happens if you push all of the 1s in the table to the left? To the top?)

