
How to get character tables of symmetric groups

March 6, 2006

These are some notes on how to construct character tables of symmetric
groups. The focus isn’t going to be on why it works, but rather how .

Recall that the conjugacy classes of the symmetric group Sn were in corre-
spondence with partitions

λ1 ≥ λ2 ≥ · · · ≥ λr,

which satisfy
∑

λi = n.

First, we can put a partial order on partitions. Say that we have two partitions
λ = (λ1 ≥ λ2 ≥ · · ·) and µ = (µ1 ≥ µ2 ≥ · · ·). We say that λ ≥ µ if

λ1 ≥ µ1

λ1 + λ2 ≥ µ1 + µ2

λ1 + λ2 + λ3 ≥ µ1 + µ2 + µ3

...

In terms of Young diagrams, this means that you can get the Young diagram
for µ by taking the Young diagram for λ and moving blocks downwards.

Here are the partitions of 6, listed in decreasing order from left to right.
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Associated to a partition λ = (λ1, . . . , λr), we can define a permutation
representation of Sn as follows.

Let [n] be the set of integers {1, 2, . . . , n}, and let Xλ be the set of all possible
ways to divide [n] into sets of size λ1, λ2, λ3, . . ., λr.

For example, X5,1 is the set of all ways to divide [6] into a set of size 5 and
a set of size 1. There are 6 of these:

X5,1 =
{

({1, 2, 3, 4, 5}, {6}), ({1, 2, 3, 4, 6}, {5}), ({1, 2, 3, 5, 6}, {4}),

({1, 2, 4, 5, 6}, {3}), ({1, 3, 4, 5, 6}, {2}), ({2, 3, 4, 5, 6}, {1})
}

.

Note that all we really need to do is pick a single element (the set of size 1),
and then the set of size 5 is everything that’s left over.

Sometimes we prefer to write these as tabloids . A tabloid of shape λ (or
λ-tabloid) is a way to put all the numbers 1, . . . , n into the Young diagram
for λ, except that order doesn’t matter in the rows. Here are some example
(3, 3)-tabloids.

1 2 3
4 5 6

=
3 2 1
4 6 5

6=
4 2 1
3 6 5

The symmetric group acts on Xλ, the set of all paritions of [n] of shape
λ, by acting on the elements. You can think of it as acting on the tabloids of
shape λ by permuting the entries. This permutation representation gives rise
to a character σλ.

Let’s write the characters of these permutation representations in a table for
S4. To do this, we have to do some work and figure out how many tabloids are
fixed by each cycle type; here is the answer.

1, 1, 1, 1 2, 1, 1 2, 2 3, 1 4
σ4 1 1 1 1 1
σ3,1 4 2 0 1 0
σ2,2 6 2 2 0 0
σ2,1,1 12 2 0 0 0
σ1,1,1,1 24 0 0 0 0

The top row lists the different conjugacy classes by way of listing partitions; the
left-hand edge lists the different representations we get for different shapes of
tabloid. The top line is the trivial representation, while the bottom one is the
regular represenation.

Note that we wrote the conjugacy classes so that they are in increasing order
from left to right, and the partitions so that they decrease from top to bottom.
This is important, or the method doesn’t work! Also, notice all the zeros in the
bottom right.

Now we’re going to do something like row reduction.

• The trivial representation is already irreducible, so the top row is an irre-
ducible character; let’s call it χ4 = σ4.
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• We can figure out how many copies of χ4 each of the lower characters
contains by taking inner products.

〈χ4, σ3,1〉 = 1

〈χ4, σ2,2〉 = 1

〈χ4, σ2,1,1〉 = 1

〈χ4, σ1,1,1,1〉 = 1

• Then, since we know how many copies of χ1 occur in the lower represen-
tations, we can subtract them off and get a new table:

1, 1, 1, 1 2, 1, 1 2, 2 3, 1 4
χ4 1 1 1 1 1
σ′

3,1 3 1 −1 0 −1
σ′

2,2 5 1 1 −1 −1
σ′

2,1,1 11 1 −1 −1 −1
σ′

1,1,1,1 23 −1 −1 −1 −1

• Here’s the miracle: Now row 2 is an irreducible character χ3,1; you can
see this by taking its inner product with itself.

• We can now repeat by taking the inner product of χ3,1 with the σ char-
acters and subtracting them off.

〈χ3,1, σ2,2〉 = 1

〈χ3,1, σ2,1,1〉 = 2

〈χ3,1, σ1,1,1,1〉 = 3

1, 1, 1, 1 2, 1, 1 2, 2 3, 1 4
χ4 1 1 1 1 1
χ3,1 3 1 −1 0 −1
σ′′

2,2 2 0 2 −1 0
σ′′

2,1,1 5 −1 1 −1 1
σ′′

1,1,1,1 14 −4 2 −1 2

• Once again, something mysterious has happened, and row 3 is irreducible.
Let’s call it χ2,2, and subtract it off from the lower rows.

〈χ2,2, σ2,1,1〉 = 1

〈χ2,2, σ1,1,1,1〉 = 2
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1, 1, 1, 1 2, 1, 1 2, 2 3, 1 4
χ4 1 1 1 1 1
χ3,1 3 1 −1 0 −1
χ2,2 2 0 2 −1 0
σ′′′

2,1,1 3 −1 −1 0 1
σ′′′

1,1,1,1 10 −4 −2 1 2

• As you might guess by now, the new row 4 is irreducible, so we can call it
χ2,1,1 and subtract it off from the last row.

〈χ2,1,1, σ1,1,1,1〉 = 3

1, 1, 1, 1 2, 1, 1 2, 2 3, 1 4
χ4 1 1 1 1 1
χ3,1 3 1 −1 0 −1
χ2,2 2 0 2 −1 0
χ2,1,1 3 −1 −1 0 1
χ1,1,1,1 1 −1 1 1 −1

And surprisingly enough, we’ve ended with the character table of S4. This
method works to construct the character table of Sn for any n. Why this method
works is a bit of a mystery that we’ll have to reserve for later.

You might notice that we did a lot of work to figure out the bottom row of
the table, even though it just turned out to be the sign representation. There’s
also some other almost-symmetry to the table. But we’ll save that for another
day.
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