18.905 Problem Set 3

Due Wednesday, September 27 in class

1. Suppose that C_* and D_* are chain complexes, and f_* and g_* are maps of chain complexes from C_* to D_* . Recall that a *chain homotopy* from f to g is a collection of maps $h_n : C_n \to D_{n+1}$ such that for all $x \in C_n$,

$$\partial h_n x + h_{n-1} \partial x = f_n x - g_n x.$$

If a chain homotopy exists, then f_* and g_* induce the same map on homology.

Find an example of two maps of chain complexes which give the same map on homology, but for which there is no chain homotopy.

- 2. Suppose $\sigma : [0,1] \to X$ is a 1-simplex. Define $\overline{\sigma}(t) = \sigma(1-t)$, the same simplex with its direction reversed. Find an element $u \in C_2(X)$ such that $\partial u = \sigma + \overline{\sigma}$ (so $\overline{\sigma}$ can always be exchanged for $-\sigma$ in homology).
- 3. Suppose $A \subset B \subset C$ are spaces. Show that there is a long exact sequence of homology groups as follows.

$$\cdots \to H_{n+1}(C,B) \to H_n(B,A) \to H_n(C,A) \to H_n(C,B) \to H_{n-1}(B,A) \to \cdots$$

4. Fix a space Y. For a space X with a subspace A, define

$$H_n^Y(X, A) = H_n(X \times Y, A \times Y).$$

Show that H_n^Y satisfies all of the Eilenberg-Steenrod axioms except for the dimension axiom.

Note: This means that you need to show:

- A map $f: X \to Z$ such that $f(A) \subset B$ induces a map $f_*: H_n^Y(X, A) \to H_n^Y(Z, B)$, and $(g \circ f)_* = g_* \circ f_*$.
- If f and g are two maps $X \to Z$ such that $f(A) \subset B$ and $g(A) \subset B$, and there is a homotopy H from f to g such that $H(a,t) \in B$ for all $a \in A, t \in [0,1]$, then $f_* = g_*$.
- If $V \subset A$ is a subspace such that the closure of V is contained in the interior of A, then the map $H_n^Y(X \setminus V, A \setminus V) \to H_n^Y(X, A)$ is an isomorphism.
- There are boundary maps $\partial: H_n^Y(X,A) \to H_{n-1}^Y(A)$ such that the sequence of maps

$$\cdots \to H_{n+1}^Y(X,A) \to H_n^Y(A) \to H_n^Y(X) \to H_n^Y(X,A) \to H_{n-1}^Y(A) \to \cdots$$

is exact. Additionally, if $f: X \to Z$ is a map with $f(A) \subset B$, then $\partial \circ f_* = f_* \circ \partial$.

• If X is a disjoint union of disconnected subspaces X_{α} , then $H_n^Y(X) = \bigoplus_{\alpha} H_n^Y(X_{\alpha})$.