18.905 Problem Set 4

Due Wednesday, October 4 in class

- 1. Let A be the 1-skeleton of Δ^3 , i.e. the union of the vertices and lines. Let CA, the cone on A, be the union of all the lines joining A to the center of Δ^3 . Compute the homology groups $H_*(CA, A)$.
- 2. Hatcher, exercise 17 on page 132.
- 3. Hatcher, exercise 27 on page 133.
- 4. A generalized homology theory E is a collection of functors E_n from the category of pairs (X,A) to the category of abelian groups, together with natural transformations $\partial_E: E_n(X,A) \to E_{n-1}(A,\emptyset)$ which satisfy the Eilenberg-Steenrod axioms except possibly for the dimension axiom. Homology H is one example. In the previous problem set we showed that H^Y , given by functors $H_n^Y(X,A) = H_n(X \times Y, A \times Y)$, is a generalized homology theory.

A map of generalized homology theories $\phi: E \to F$ is a collection of natural transformations $\phi_n: E_n \to F_n$ such that $\partial_F \circ \phi_n = \phi_{n-1} \circ \partial_E$.

Show that, with this definition, generalized homology theories form a category. Given a map $f: Y \to Z$ of spaces, explain why we get a map of generalized homology theories $H^f: H^Y \to H^Z$. Show that this is a functor from spaces to generalized homology theories.