18.905 Problem Set 9

Due Wednesday, November 8 in class

1. Use naturality to show that if X is the disjoint union of subspaces X_{α}, then there is an isomorphism of rings

$$
H^{*}(X) \rightarrow \prod_{\alpha} H^{*}\left(X_{\alpha}\right)
$$

where the latter ring has the standard componentwise ring structure

$$
\left(r_{\alpha}\right) \cdot\left(s_{\alpha}\right)=\left(r_{\alpha} s_{\alpha}\right)
$$

2. Let X be the lens space $L(n, 1)$ from Hatcher, problem 8 on page 131 . (We looked at this space on a previous assignment.) Compute (using the Δ-complex structure when necessary) the cohomology and cup product structure on $H^{*}(X ; \mathbb{Z})$ and $H^{*}(X ; \mathbb{Z} / n)$,
3. Suppose that C_{*} and D_{*} are chain complexes. Define a new chain complex $\underline{\operatorname{Hom}}\left(C_{*}, D_{*}\right)$ which, in degree n, is

$$
\underline{\operatorname{Hom}}\left(C_{*}, D_{*}\right)_{n}=\prod_{p} \operatorname{Hom}\left(C_{p}, D_{p+n}\right) .
$$

In other words, an element of this chain complex in degree n consists of a family of maps $f_{p}: C_{p} \rightarrow D_{p+n}$ (so n is the amount by which each map raises degree).
Give a definition of a boundary map $\delta: \underline{\operatorname{Hom}}\left(C_{*}, D_{*}\right)_{n} \rightarrow \underline{\operatorname{Hom}}\left(C_{*}, D_{*}\right)_{n-1}$ such that the evaluation map

$$
\begin{array}{rll}
\underline{\operatorname{Hom}}\left(C_{*}, D_{*}\right) \otimes C_{*} & \rightarrow & D_{*} \\
f \otimes x & \mapsto & f(x)
\end{array}
$$

is a chain map, where the left-hand side has the standard Leibniz formula for its boundary.
What does it mean for an element of $\underline{\operatorname{Hom}}\left(C_{*}, D_{*}\right)_{0}$ to be a cycle? When do two cycles in $\underline{\operatorname{Hom}}\left(C_{*}, D_{*}\right)_{0}$ differ by a boundary?
4. Show the following dual version of the Künneth formula: If C_{*} is a chain complex where each C_{p} is levelwise free, and D_{*} is any chain complex, show that there are natural exact sequences

$$
\begin{aligned}
0 \rightarrow \prod_{t-s=n+1} \operatorname{Ext}\left(H_{s}\left(C_{*}\right), H_{t}\left(D_{*}\right)\right) \rightarrow H_{n}\left(\underline{\operatorname{Hom}}\left(C_{*}, D_{*}\right)\right) & \rightarrow \\
& \prod_{t-s=n} \operatorname{Hom}\left(H_{s}\left(C_{*}\right), H_{t}\left(D_{*}\right)\right) \rightarrow 0
\end{aligned}
$$

which are split. (Hint: Follow the same method as the proofs of the Künneth formula and the universal coefficient theorems.)

