Due Wednesday, February 14 in class

Suppose that \mathcal{C} is a category and Z is an object of \mathcal{C} . We then define a contravariant functor $\operatorname{Hom}(-, Z)$ from \mathcal{C} to the category Set of sets as follows: $\operatorname{Hom}(-, Z)$ sends an object Y to the set $\operatorname{Hom}(Y, Z)$, and a map $f: Y \to Y'$ to the map of sets $f^* : \operatorname{Hom}(Y', Z) \to \operatorname{Hom}(Y, Z)$ given by precomposition with f. Such a functor is called a *representable functor*.

1. Show that under this definition, $\operatorname{Hom}(-, Z)$ really is a functor. Given a map $g: Z \to Z'$, show that there is a natural transformation

 $g_*: \operatorname{Hom}(-, Z) \to \operatorname{Hom}(-, Z')$

of functors, and show that $id_* = id$ and $(gh)_* = g_*h_*$. (In other words, $\operatorname{Hom}(-, -)$ is a functor from $\mathcal{C}^{op} \times \mathcal{D}$ to Set.)

- 2. Conversely, prove that any natural transformation θ : Hom $(-, Z) \rightarrow$ Hom(-, Z') is of the form g_* for some unique map $g : Z \rightarrow Z'$. (This should look familiar to those who did the assignment on acyclic models last semester.)¹
- 3. Recall the definition of a *limit*: Suppose that I is an index category and $F: I \to \mathcal{C}$ is a functor. A limit of I consists of an object $c \in \mathcal{C}$, together with maps $\alpha_i : c \to F(i)$ for all $i \in I$ such that $F(g) \circ \alpha_i = \alpha_j$ for all maps $g: i \to j$ in I. This must satisfy the requirement that any other object d with maps $\beta_i : d \to F(i)$ such that $F(g) \circ \beta_i = \beta_j$ for all g, there exists a unique map $\gamma: d \to c$ such that $\alpha_i \circ \gamma = \beta_i$ for all $i \in I$. We usually write $c = \lim_I F$.

Show that this is *equivalent* to providing a natural isomorphism of functors

$$\operatorname{Hom}(-,c) \to \lim_{I} \operatorname{Hom}(-,F(i)).$$

4. Suppose that C and D are categories, and F is a functor from C to D. We say that a functor G from D to C is *right adjoint* to F if there is a natural isomorphism of functors

$$\eta : \operatorname{Hom}_{\mathcal{D}}(F(-), -) \to \operatorname{Hom}_{\mathcal{C}}(-, G(-))$$

from $\mathcal{C}^{op} \times \mathcal{D} \to \text{Set.}^2$ Use the previous questions to show that any two right adjoints of F are naturally isomorphic.

 $^{^{1}}$ Questions 1 and 2 constitute what is usually known as the Yoneda lemma.

 $^{^2 \}mathrm{Strictly}$ speaking, the natural isomorphism η is part of the data of a right adjoint.