18.906 Problem Set 10

Due Wednesday, April 25 in class

- 1. Suppose that $\xi \to X$ is a 3-dimensional complex vector bundle. Use symmetric polynomials to express the Chern classes of $\bigwedge^2 \xi$ in terms of those of ξ . Same question for Stiefel-Whitney classes.
- 2. Also using symmetric polynomials, find explicit formulas for the Chern character in terms of Chern classes when $\xi \to X$ is a 2-dimensional vector bundle. Same question when X is restricted to only have nonzero cohomology in dimensions 0 through 4 but ξ can have arbitrary dimension.
- 3. The octonions \mathbb{O} are an 8-dimensional non-associative division algebra over \mathbb{R} ; there is a bilinear multiplication $\mathbb{O} \times \mathbb{O} \to \mathbb{O}$ such that $x \cdot y = 0$ if and only if x = 0 or y = 0. Let \mathbb{O}^{\times} be the set of nonzero elements of \mathbb{O}

Explain what goes wrong if we try to define octonion projective space via the formula

$$\mathbb{OP}^n = \mathbb{O}^{n+1} / \{ v \sim \alpha v, \alpha \in \mathbb{O}^{\times} \};$$

in particular there is not a fiber bundle $\mathbb{O}^{n+1} \setminus \{0\} \to \mathbb{OP}^n$ with fiber \mathbb{O}^{\times} .

4. Compute $K(\mathbb{RP}^2)$ as a ring.