18.906 Problem Set 10

Due Wednesday, April 25 in class

1. Suppose that $\xi \rightarrow X$ is a 3 -dimensional complex vector bundle. Use symmetric polynomials to express the Chern classes of $\bigwedge^{2} \xi$ in terms of those of ξ. Same question for Stiefel-Whitney classes.
2. Also using symmetric polynomials, find explicit formulas for the Chern character in terms of Chern classes when $\xi \rightarrow X$ is a 2 -dimensional vector bundle. Same question when X is restricted to only have nonzero cohomology in dimensions 0 through 4 but ξ can have arbitrary dimension.
3. The octonions \mathbb{O} are an 8 -dimensional non-associative division algebra over \mathbb{R}; there is a bilinear multiplication $\mathbb{O} \times \mathbb{O} \rightarrow \mathbb{O}$ such that $x \cdot y=0$ if and only if $x=0$ or $y=0$. Let \mathbb{O}^{\times}be the set of nonzero elements of \mathbb{O}
Explain what goes wrong if we try to define octonion projective space via the formula

$$
\mathbb{O P}^{n}=\mathbb{O}^{n+1} /\left\{v \sim \alpha v, \alpha \in \mathbb{O}^{\times}\right\} ;
$$

in particular there is not a fiber bundle $\mathbb{D}^{n+1} \backslash\{0\} \rightarrow \mathbb{O} \mathbb{P}^{n}$ with fiber \mathbb{O}^{\times}.
4. Compute $K\left(\mathbb{R P}^{2}\right)$ as a ring.

