Due Wednesday, May 2 in class

- 1. When does the tangent bundle of \mathbb{RP}^n have trivial Stiefel-Whitney classes?
- 2. Suppose ξ, ξ' are vector bundles on X. Show that

$$\bigwedge^n (\xi \oplus \xi') \cong \bigoplus_{p+q=n} (\wedge^p \xi) \otimes (\wedge^q \xi')$$

for n > 1. Use this formula with ξ' the trivial bundle to extend these to natural operations $\lambda^n : KO(X) \to KO(X)$ for X a finite CW-complex.

3. For $E \in KO(X)$, define an associated characteristic power series $\lambda_t(E) = \sum_i \lambda^i(E) t^i \in KO(X)[[t]]$. Deduce that $\lambda_t(E + E') = \lambda_t(E)\lambda_t(E')$.

Deduce that when ξ is a direct sum of line bundles L_1, \ldots, L_n , the elements $\lambda^i([\xi])$ are the elementary symmetric polynomials in the elements $[L_i]$ of KO(X).

4. If $p(x_1, x_2, ..., x_n)$ is a polynomial with integer coefficients, we can define an operation on θ_p on KO(X) by

$$E \mapsto p(\lambda^1(E), \lambda^2(E), \dots, \lambda^n(E)).$$

Show that, for each n, there is such a polynomial p in x_1, \ldots, x_n with operation $\psi^n = \Theta_p$ such that whenever we have $E = E_1 + \cdots + E_m$ where each E_i is the class associated to a line bundle, then

$$\psi^{n}(E) = E_{1}^{n} + E_{2}^{n} + \dots + E_{m}^{n}.$$

(Hint: Construct p using symmetric polynomials.)

(Note: Questions 2 through 4 have, of course, analogous versions for K(X).)