Due Wednesday, May 9 in class

1. Suppose that you are given a sequence of based spaces E_n for $n \ge 0$ together with based maps $\sigma_n : E_n \to \Omega E_{n+1}$ which are isomorphisms on homotopy groups. Show that σ_n gives rise to a natural isomorphism $[X, E_n]_* \to [\Sigma X, E_{n+1}]_*$ for all n. Explain how this allows us to define

$$\underline{E}^{n}(X) = [\Sigma^{k}X, E_{n+k}]_{*}$$

for all $n \in \mathbb{Z}$, X a CW-complex. Show that $\underline{E}^*(-)$ is a generalized (reduced) cohomology theory on CW-complexes in the sense that it is a collection of functors which are homotopy invariant and abelian group valued, satisfy CW-excision, and have a long exact sequence associated to a cofibration $A \subset X$.¹

- 2. Use the Adem relations to show that the mod-2 Steenrod algebra is generated by the elements $Sq^{2^k}, k \geq 0$. Conclude that there can only be a space X with cohomology ring $H^*(X; \mathbb{Z}/2) \cong \mathbb{Z}/2[x]/(x^3)$ if x is in degree 2^k for some k.
- 3. Determine the subalgebra of the Steenrod algebra generated by Sq^1 and Sq^2 .
- 4. Use the splitting principle, together with the identities satisfied by Steenrod squares, to find formulas for $Sq^i(w_k(\xi))$ for all $i \ge 0, k \le 3$, where $w_k(\xi)$ is the k'th Stiefel-Whitney class of a vector bundle ξ on a space X.²

¹Such a collection of spaces and structure maps is called an Ω -spectrum; if we drop the condition that the structure maps are isomorphism on homotopy groups, we get a spectrum. (Depending on who you ask, this terminology is a little outdated.)

²The results of this exercise imply that the third Stiefel-Whitney class w_3 is determined by w_1, w_2 , and the action of the Steenrod algebra on $H^*(X; \mathbb{Z}/2)$. In fact, the only Steifel-Whitney classes which are "primitive", in the sense of not being determined by the lower classes and the Steenrod algebra, are the classes w_{2k} .