18.906 Problem Set 5 (New Version)

Due Wednesday, March 14 in class

- 1. Suppose $f: X \to Y$ is a map of 1-connected CW-complexes such that the induced map $f_*: H_*(X) \to H_*(Y)$ is an isomorphism. Show that f is a homotopy equivalence. (Hint: Replace f with a cofibration and identify the first nonvanishing relative homotopy group.)
- 2. Suppose X = K(G, n) and Y = K(H, n) are based CW-complexes which are Eilenberg-Maclane spaces. Show that the functor π_n gives an isomorphism

$$[X, Y]_* \to \operatorname{Hom}(G, H).$$

(Don't assume that X and Y are necessarily constructed by the same procedure as in class.)

3. The topological group S^1 acts on the unit sphere $S^{2n+1} \subset \mathbb{C}^{n+1}$ via

$$\lambda \cdot (z_0, \cdots, z_n) = (\lambda z_0, \cdots, \lambda z_n)$$

with quotient space \mathbb{CP}^n . You may assume that this action has transverse slices. Compute $\pi_k(\mathbb{CP}^n)$ in as large a range as you can.

Let $\mathbb{CP}^{\infty} = \bigcup_n \mathbb{CP}^n$. What are the homotopy groups of \mathbb{CP}^{∞} ?

4. Same question as the previous problem with $\{\pm 1\}$ acting on $S^n \subset \mathbb{R}^{n+1}$ with quotient \mathbb{RP}^n , and union \mathbb{RP}^∞ .