Due Wednesday, March 21 in class

- 1. Compute the rational cohomology of ΩS^n as a ring, where n is even.
- 2. Suppose that X is 1-connected. Use the Serre spectral sequence to show the (co)homology groups of X are finitely generated if and only if the (co)homology groups of the loop space ΩX are. Same question for finite instead of finitely generated.
- 3. As in a previous assignment, the group S^1 acts on $S^{2n-1} \subset \mathbb{C}^n$ via

$$\lambda \cdot (z_0, \dots, z_n) = (\lambda z_0, \dots, \lambda z_n)$$

There is an induced action on the union $S^{\infty} = \cup S^{2n-1}$.

Let $C_n \subset S^1$ be the cyclic subgroup of order n. The quotient space S^{∞}/C_n is a $K(\mathbb{Z}/n, 1)$.

The group S^1/C_n acts on S^{∞}/C_n with quotient \mathbb{CP}^{∞} , and there is a resulting fibration sequence $S^1 \to K(\mathbb{Z}/n, 1) \to \mathbb{CP}^{\infty}$. Use the Serre spectral sequence to show that the cohomology groups of $K(\mathbb{Z}/n, 1)$ are finite except in dimension 0. (Hint: Use the Hurewicz isomorphism to find the first nonvanishing homology and cohomology groups, and use that to determine differentials.)

4. Using the previous exercises, show that $H^p(K(\mathbb{Z}, m))$ is finitely generated for all p, m > 0. Show that $H^p(K(\mathbb{Z}/n, m))$ is finite for all p, n, m > 0.