18.906 Problem Set 7

Due Friday, April 6 in class

1. Suppose that $G \rightarrow H$ is a continuous homomorphism of topological groups and $P \rightarrow X$ is a principal G-bundle. Show that there is a principal H bundle $P^{\prime}=P \times_{G} H \rightarrow X$.
Let F be a space with a left action of H, given a left action of G by restriction. Show that the show that the fiber bundles $P \times{ }_{G} F \rightarrow X$ and $P^{\prime} \times_{H} F \rightarrow X$ are isomorphic.
2. Suppose G acts on a space F on the left such that the map $g_{*}: H_{*}(F) \rightarrow$ $H_{*}(F)$ is the identity for all $g \in G$. Let $P \rightarrow X$ be a principal G-bundle, and let $E \rightarrow X$ be the associated fiber bundle $P \times_{G} F \rightarrow X$ with fiber F. Show that the action of $\pi_{1}(X)$ on $H_{*}(F)$ is trivial.
In particular, if the group G is path-connected, show that the action of G on $H_{*}(F)$ is always trivial.
3. Suppose that $\xi \rightarrow X$ is a complex vector bundle with inner product associated to a principal $U(n)$-bundle $P \rightarrow X$. There is then a unit sphere bundle $S \subset \xi$ consisting of the unit vectors; this is a fiber bundle over X with fiber $S^{2 n-1}$.
Show that $U(n)$ acts trivially on $H_{*}\left(S^{2 n-1}\right)$. Use the Serre spectral sequence in cohomology to define an interesting element in $H^{2 n}(X)$ and explain how it determines the differential $d_{2 n}: H^{p}\left(X ; H^{2 n-1}\left(S^{2 n-1}\right)\right) \rightarrow$ $H^{p+2 n}(X)$.
4. Suppose that L is a generalized homology theory, i.e.:

- We have a collection of functors L_{n} for $n \in \mathbb{Z}$ from the category of pairs $\{(X, A) \mid A \subset X\}$ to the category of abelian groups.
- We have natural boundary maps

$$
\partial: L_{n}(X, A) \rightarrow L_{n-1}(A)=L_{n-1}(A, \emptyset) .
$$

- The sequence of maps

$$
\cdots \rightarrow L_{n+1}(X, A) \rightarrow L_{n}(A) \rightarrow L_{n}(X) \rightarrow L_{n}(X, A) \rightarrow L_{n-1}(A) \rightarrow \cdots
$$

is exact for any $A \subset X$.

- If f and g are two maps of pairs $(X, A) \rightarrow(Y, B)$ which are homotopic through maps of pairs, then the maps f_{*} and g_{*} from $L_{n}(X, A) \rightarrow$ $L_{n}(Y, B)$ are the same.
- If $V \subset A$ is a subspace such that the closure of V is contained in the interior of A, then the $\operatorname{map} L_{n}(X \backslash V, A \backslash V) \rightarrow L_{n}(X, A)$ is an isomorphism.
- If X is a disjoint union of disconnected subspaces X_{α}, then $L_{n}(X)=$ $\oplus_{\alpha} L_{n}\left(X_{\alpha}\right)$.

For short, we write $L_{n}=L_{n}(*)$ for the coefficients. One can show using the long exact sequence that that $L_{n}\left(S^{k}, p t\right) \cong L_{n-k}$.
Show that a degree d map of based spaces $S^{k} \rightarrow S^{k}$ induces multiplication by d on $L_{n}\left(S^{k}, p t\right)$. (Hint: Any such map is homotopic to a pinch map $S^{k} \rightarrow \vee_{d} S^{k}$ followed by the fold map $\vee_{d} S^{k} \rightarrow S^{k}$.)
If X is a finite CW-complex, use the filtration of X by skeleta to get a collection of long exact sequences and assemble these into an exact couple as follows.

Express the E_{1}-term and the d_{1}-differential in terms of the cellular chain complex of X. Use this to compute the E_{2}-term.
(This spectral sequence converges to $L_{*}(X)$; the spectral sequence is called the Atiyah-Hirzebruch spectral sequence.)

