18.906 Problem Set 9

Due Wednesday, April 18 in class

1. We showed in a previous problem set that the map $O(n) \rightarrow O(n+1)$ is $(n-1)$-connected. Show that the map $B O(n) \rightarrow B O(n+1)$ is n-connected as a result.
Conclude the following cancellation theorem: Suppose X is a d-dimensional $C W$-complex, $d<n$, with n-dimensional vector bundles ξ_{1} and ξ_{2}. Let ε be the trivial vector bundle on X. Show that if $\xi_{1} \oplus \varepsilon \cong \xi_{2} \oplus \varepsilon$, we must have $\xi_{1} \cong \xi_{2}$.
2. If X is a finite $C W$-complex, show that any vector bundle on X is a subbundle of a trivial bundle $\oplus^{n} \varepsilon$. (Hint: First show it for the canonical bundles on the finite Grassmannians $\operatorname{Gr}(k, n)$.)
3. Suppose that we have nonnegative integers a, b with binary expansion $a=a_{n} a_{n-1} \ldots a_{1} a_{0}=\sum a_{k} 2^{k}$ and similarly $b=b_{n} b_{n-1} \ldots b_{1} b_{0}$. (Some of the leading digits might be 0 .) Show that we have an identity of binomial coefficients

$$
\binom{a}{b} \equiv \prod_{i=0}^{n}\binom{a_{i}}{b_{i}} \quad(\bmod 2)
$$

4. Let γ be the canonical real line bundle on \mathbb{R}^{n}, classified by the nontrivial element in $H^{1}\left(\mathbb{R P}^{n} ; \mathbb{Z} / 2\right)$. Use Stiefel-Whitney classes and the previous problem to show that $\oplus^{k} \gamma$ cannot possibly be the trivial bundle unless k is a multiple of 2^{m}, where $2^{m-1} \leq n<2^{m}$.
