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Abstract

We show that there is a homotopy cofiber sequence of spectra relating Carlsson’s

deformation K-theory of a group G to its “deformation representation ring,” analogous

to the Bott periodicity sequence relating connective K-theory to ordinary homology. We

then apply this to study simultaneous similarity of unitary matrices.

The algebraic K-theory of a category uses the machinery of infinite loop space theory

to associate spectra to symmetric monoidal categories. The homotopy groups of these

spectra give information about the structure of the category itself. However, some sym-

metric monoidal categories arise with natural topologies on their objects and morphisms

that give information about how objects in the category can behave in families.

For example, given a group G, we can consider the category of its finite-dimensional

complex representations or unitary representations, each of which comes with a natural

topology. Carlsson’s “deformation K-theory,” or the associated unitary variant, produces

a K-theory spectrum which depends on both the symmetric monoidal structure and the

behavior in families.

The purpose of this article is to identify the cofiber of the Bott map on unitary de-

formation K-theory ([2], [8]) of a finitely generated group G. For a finite group G, this

cofiber can be identified with the Eilenberg-MacLane spectrum associated to the complex

representation ring R[G]. More generally one obtains a “unitary deformation represen-

tation ring,” also denoted by R[G], which is a commutative HZ-algebra spectrum. This

deformation representation ring was considered in a previous paper [7]. Results of Park

and Suh [9] will be applied to show that this deformation representation ring admits a

cellular construction as an HZ-module spectrum.

There is a resulting first quadrant Atiyah-Hirzebruch style spectral sequence converging

to the homotopy groups of deformation K-theory, as follows.

Ep,q
2 = Ep,q

3 = πp(R[G])⊗ πq(ku)⇒ πp+qKG.

As a side effect of this identification of R[G] with the cofiber of the Bott map, we obtain

results about the homotopy type of spaces parameterizing representations of the group

G. In particular, when G is free, we obtain information about simultaneous similarity.

The spectral theorem in linear algebra implies that a unitary matrix A is determined,

up to similarity, by its set of eigenvalues {z1, . . . , zn}, counted with multiplicity. Taking
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the eigenvalues of a matrix gives a map from U(n) to the n-fold symmetric product

Symn(S1), inducing a bijection

U(n)Ad/U(n)→ Symn(S1).

In fact, both sides have natural topologies that make this map a homeomorphism.

The simultaneous similarity problem in U(n) is to classify the orbits of k-tuples of

matrices (A1, . . . , Ak) under unitary change of basis, or simultaneous conjugation. There

is an analogous classification in GL(n) due to Friedland [4], which generalizes the Jordan

canonical form but is much more involved.

The simplest invariant that can be extracted from this situation is the collection of

eigenvalues. This gives a continuous eigenvalue map

φn,k : X(n, k) =
[

U(n)Ad
]k

/U(n)→
[

Symn(S1)
]k

.

In addition, there are stabilization maps X(n, k) ֒→ X(n + 1, k), given by

(Ai) 7→

([

Ai 0

0 1

])

Define X(∞, k) to be the (homotopy) colimit of the X(n, k). These stabilization maps

commute with the stabilization maps Symn(S1) ֒→ Symn+1(S1), given by adding an

extra copy of the basepoint 1.

We will show that the stable eigenvalue map

φk : X(∞, k)→
[

Sym∞(S1)
]k

is a homotopy equivalence. The Dold-Thom theorem already implies that the map

S1 → Sym∞(S1) is an isomorphism on homotopy groups. Therefore, this result can

be rephrased by saying that the map (S1)k = X(1, k)→ X(∞, k) is a homotopy equiva-

lence.

At the end of this paper we will give two proofs of this result. The first proof presented

here applies to more general spaces of representations and makes use of recently developed

categories of module spectra, particularly of smash products over the connective K-

theory spectrum. The author does not know general results about the stabilization of

the homotopy groups of the spaces X(n, k).

In section 6, we give an interpretation of the eigenvalue map in terms of simplicial

spaces, using the simplicial decomposition of U(n) given in Harris [6]. We then establish a

geometric proof by establishing contractibility for various spaces parameterizing multiple

hyperplane arrangements in C
n for large n.

The geometric proof amounts to showing that the maps φk are quasifibrations. It

should be noted that the eigenvalue maps φn,k are not quasifibrations, even for n = 3,

k ≥ 2. The fiber of the eigenvalue map at the basepoint is a single point; an exercise is

to show that the fiber over a point of the form

({ζ1, ζ2, 1, }, {ζ1, ζ2, 1, }, {1, 1, 1}, {1, 1, 1}, . . .) ∈
[

Sym3(S1)
]k

,

for ζ1, ζ2, 1 distinct elements of S1, has the homotopy type of S4.

1. Definitions

We briefly recall the definition and several properties of deformation K-theory from

[8, Section 4] and the deformation representation ring functor from [7, Section 4].
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Recall ([13], [12]) that a Γ-space M is a functor from finite based sets to based spaces

such that M(∗) = ∗. Associated to a levelwise finite simplicial set K, there is an associated

based space M(K) obtained by applying M levelwise and taking geometric realization.

There is a natural assembly map K ∧M(L)→M(K ∧ L), and so a Γ-space gives rise to

a symmetric spectrum

Sp(M) = {M(Sn)}.

If X is a topological abelian monoid, we can define a Γ-space associated to X by

X(Z) = F (Z, X),

where F denotes the based mapping space, such that for α : Z → Z ′,

α∗(f)(z′) =
∑

α(z)=z′

f(z).

Associated to a (topological) group G, we let Rep(G) be the space
∐

n∈N

Hom(G, U(n))/U(n),

where the space of homomorphisms has the compact-open topology and U(n) acts by

conjugation. This space parameterizes isomorphism classes of unitary representations of

G.

The operations⊕ and⊗ give rise to the structure of a commutative topological semiring

on Rep(G). In particular, the abelian addition operation ⊕ allows us to construct a

spectrum

R[G] = Sp (Rep(G)) .

One can show that R[G] is the spectrum obtained by iterated application of the the

classifying space functor. This spectrum can be viewed as a homotopical group completion

functor, generalizing the Grothendieck group construction of the ordinary representation

ring.

The natural map

Rep(G)→ Ω∞R[G]

is a homotopy group completion map. The operation ⊗ gives rise to the structure of an

E∞-algebra over HZ on R[G].

The construction of Rep(G) has a K-theoretic analogue. Let U be a fixed countably

infinite inner product space over C. A G-plane in U is a pair (V, ρ), where V is a finite

dimensional subspace of U and ρ : G→ U(V ) is a group homomorphism. We define the

deformation K-theory of G, KG, to be the Γ-space given by

KG(Z) =
{

(Vz , ρz)z∈Z

∣

∣

∣
Vz a G-plane, Vz ⊥ Vz′ if z 6= z′, V∗ = 0

}

.

For a morphism α : Z → Z ′, we define

α∗((Vz , ρz)z∈Z) =





⊕

α(z)=z′

Vz,
⊕

α(z)=z′

ρz





z′∈Z′

.

Taking isomorphism classes gives a map KG → Rep(G) of Γ-spaces. Therefore, there

is a natural map of spectra Sp(KG)→ R[G].
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The justification for the name K-theory arises as follows. We define the following

spaces.

Ob(CG) =
∐

n∈N

Hom(G, U(n))

Mor(CG) =
∐

n∈N

Hom(G, U(n)) ×U(n)

View a homomorphism ρ ∈ Ob(CG) as a (unitary) representation of G, and a pair

(ρ, A) ∈Mor(C) as an isometry of representations A : ρ→ AρA−1. These form an inter-

nal category in spaces; the source, target, unit, and composition maps are all continuous.

Further, the block sum ⊕ makes this into an internal symmetric monoidal category (in

fact, a permutative category) in spaces. The spectrum Sp(KG) is homotopy equivalent

to the associated K-theory object K(CG).

Explicitly, we have a nerve

N(CG) ≃
∐

n∈N

Hom(G, U(n)) ×U(n) EU(n).

The permutative category structure makes this into a topological monoid with an E∞-

H-space structure, and K(CG) is the connective spectrum associated to N(CG). If G is

trivial, the associated spectrum is the connective K-theory spectrum.

2. Filtrations of the representation ring

We now provide a cellular construction of the topological monoid Rep(G) of the pre-

vious section.

If G is finitely generated and discrete, the space Hom(G, U(n)) is the set of real points

of an algebraic variety, with U(n) acting algebraically by conjugation. In particular, by

[9, Theorem 3.7], it admits the structure of a U(n)-CW complex.

For any N ∈ N, let Rep(G, N) be the submonoid of Rep(G) generated by the subspace
∐

n≤N Hom(G, U(n)). This gives rise to a sequence of inclusions

∗ = Rep(G, 0) ⊂ Rep(G, 1) ⊂ Rep(G, 2) ⊂ · · ·

A point of Rep(G) is an isomorphism class of unitary representations of G. In par-

ticular, any such representation admits a unique decomposition into irreducible sub-

representations. Let Sum(G, N) ⊂ Hom(G, U(N)) be the subspace consisting of those

representations which are reducible.

Equivalently, a representation V ∈ Hom(G, U(N)) is irreducible if and only if the

stabilizer of it under the action of U(N) is the diagonal subgroup S1, as follows. If

V ∼= V ′ ⊕ V ′′, the stabilizer contains an action of S1 × S1 acting individually on each

factor. Conversely, Schur’s lemma shows that the endomorphism ring of any irreducible

object V is a finite dimensional division algebra over C, and hence consists only of scalar

maps. This shows that the map Sum(G, N) ֒→ Hom(G, U(N)) must be a U(N)-CW

inclusion.

This gives rise to the following diagram of spaces.
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Sum(G, N)/U(N)
�

�

//

��

Hom(G, U(N))/U(N)

��

Rep(G, N − 1) // Rep(G, N)

Applying the free abelian topological monoid functor Sym∞((−)+), which is left adjoint

to the forgetful functor, to the top row gives a diagram of abelian topological monoids.

Sym∞(Sum(G, N)/U(N)+) �

�

//

��

Sym∞(Hom(G, U(N))/U(N)+)

��

Rep(G, N − 1) // Rep(G, N)

The statement that any unitary representation of G is uniquely (up to isomorphism)

a direct sum of irreducible subrepresentations implies that on the level of underlying

abelian monoids, this diagram is a pushout diagram.

The monoids in the above diagram admit augmentations to the monoid N, and are

compact Hausdorff in each fiber. Therefore, the above diagram is a pushout diagram of

topological abelian monoids. These pushout diagrams are preserved by cartesian prod-

ucts, and hence the associated diagram of classifying spaces is a pushout diagram.

We include a proof of the following for completeness.

Proposition 1. Suppose A → B is a CW-inclusion and Sym∞(A+) → M is a map

of topological abelian monoids. Let N be the pushout of the diagram

M ← Sym∞(A+)→ Sym∞(B+)

of topological abelian monoids. Then the map M → N is a CW-inclusion, and the se-

quence of maps

M → N → Sym∞(B/A)

induces a homotopy fibration sequence of spectra

Sp(M)→ Sp(N)→ HZ∧(B/A).

Proof. The pushout N is formed as a sequence of iterated CW attachments Ni → Ni+1,

where N0 = M and

Ni+1 = Ni

⋃

(∪Bj×A×Bi−j)/Σi+1

Bi+1/Σi+1.

Weak equivalences are preserved by pushouts along cofibrations, so a weak equivalence

M ′ →M of topological monoids induces a homotopy equivalence of pushouts. In partic-

ular, the natural weak equivalence

B(M, Sym∞(A+), Sym∞(A+))→M,

using the bar construction with respect to the monoid structure, induces a weak equiva-

lence of topological abelian monoids

B(M, Sym∞(A+), Sym∞(B+))→ N.

The classifying space functor commutes with products, and hence with the bar con-

struction. Upon iterative application, we find that there is a natural weak equivalence of
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spectra

B(Sp(M),Sp(Sym∞(A+)),Sp(Sym∞(B+)))→ Sp(N).

The generalized Dold-Thom theorem implies that there is a natural weak equivalence

HZ∧Σ∞X+ → Sp(Sym∞(X+))

for spaces X of the homotopy type of a CW-complex. Therefore, there is a natural weak

equivalence

B(Sp(M), HZ∧Σ∞A+, HZ∧Σ∞B+)→ Sp(N),

where the bar construction is taken with respect to coproduct (wedge) in spectra. Equiv-

alently, there is a homotopy pushout diagram of spectra

HZ∧Σ∞A+
//

��

HZ∧ Σ∞B+

��

Sp(M) // Sp(N).

The result follows by considering the homotopy cofibers of the rows in this diagram.

Let RN = Hom(G, U(N))/ Sum(G, U(N)); it is a based PU(N)-CW complex with free

action away from the basepoint.

Corollary 2. The spectrum R[G] is the homotopy colimit of the spectra

Sp(Rep(G, N)).

There are fibration sequences of spectra for each N ≥ 1

Sp(Rep(G, N − 1))→ Sp(Rep(G, N))→ HZ∧(RN/PU(N)).

Proof. The inclusions Rep(G, N − 1) → Rep(G, N) are CW-inclusions and induce

pushout diagrams of spectra. The space Rep(G) is therefore the homotopy colimit of

the subspaces Rep(G, N), and Sp(Rep(G)) is the homotopy colimit of its subspectra

Sp(Rep(G, N)).

The existence of the fibration sequence is immediate from the proposition.

3. Filtrations of unitary deformation K-theory

We briefly recall the following results from [8]. From this point forward we abuse

notation by writing KG to denote the spectrum associated to the Γ-space of section 1.

In the previous section we showed that that Rep(G) has a filtration by submonoids

Rep(G, N) consisting of representations that are direct sums of irreducible subrepresen-

tations of dimension N or smaller. There is an associated filtration of the symmetric

monoidal category CG by closed subcategories CG,N , and a diagram of maps of spectra

as follows.

K(CG,1) //

��

K(CG,2) //

��

· · · // KG

��

Sp(Rep(G, 1)) // Sp(Rep(G, 2)) // · · · // R[G].
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The map hocolimK(CG,N)→ KG is a weak equivalence [8, Proposition 14]. Addition-

ally, the objects K(CG,N) are module spectra over ku for all N [8, Proposition 30].

Recall that RN = Hom(G, U(N))/ Sum(G, U(N)). In [8, Section 4], for each N , a

spectrum kuPU(N) with a continuous action of PU(N) was constructed, with underly-

ing spectrum homotopy equivalent to ku, so that there is a cofibration sequence up to

homotopy

K(CG,N−1)→ K(CG,N)→ RN ∧
PU(N)

kuPU(N).

([8, Corollary 19] and [8, Corollary 22].) Taking smash products over ku with HZ gives

a natural cofibration sequence

HZ ∧
ku

K(CG,N−1)→ HZ ∧
ku

K(CG,N)→ HZ∧(RN/PU(N)).

([8, Section 8].)

Theorem 3. The map K(CG)→ R[G] induces a weak equivalence

HZ ∧
ku

K(CG)→ R[G].

Proof. The ku-module structure on K(CG,N) is induced by tensor product with trivial

vector spaces. It coherently commutes with the abelian group structure on Rep(G, N)

via the augmentation map sending a vector space to its dimension. Therefore, the map

N(CG,N)→ Rep(G, N) induces a map of ku-modules.
The proof proceeds by proving inductively that the adjoint map of HZ-modules

HZ ∧
ku

K(CG,N)→ Sp(Rep(G, N))

is a weak equivalence, and taking homotopy colimits. By the five-lemma, it suffices to

show that the induced maps of homotopy cofibers are weak equivalences for all N . By

corollary 2 and [8, Section 8], these homotopy cofibers are both weakly equivalent to

HZ∧(RN/PU(N)).

Therefore, it suffices to produce a map demonstrating that this map is a weak equivalence.

There is a natural diagram of maps of spaces

Sum(G, U(N)) //

��

N(CG,N−1)

��

// Rep(G, N − 1)

��

Hom(G, U(N)) // N(CG,N) // Rep(G, N).

Suspension is left adjoint to the forgetful functor to spaces, so there is an induced diagram

of maps of symmetric spectra

Σ∞ Sum(G, U(N))+ //

��

K(CG,N−1) //

��

Sp(Rep(G, N − 1))

��

Σ∞ Hom(G, U(N))+ // K(CG,N) // Sp(Rep(G, N)).

Taking pushouts in columns gives maps

Σ∞RN → kuPU(N) ∧
PU(N)

RN → HZ∧(RN/PU(N))
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whose adjoint maps

HZ ∧
PU(N)

RN → HZ ∧
ku

kuPU(N) ∧
PU(N)

RN → HZ∧(RN/PU(N))

are equivalences.

Corollary 4. There is a homotopy cofiber sequence of ku-modules

Σ2KG
β
→KG→ R[G],

where β is multiplication by the Bott element in π2(ku). There is a corresponding con-

vergent “Atiyah-Hirzebruch” spectral sequence with E2-term

πp(R[G])⊗ πq(ku)⇒ πp+qKG.

Proof. This follows by smashing the homotopy cofiber sequence

Σ2ku
β
→ ku→ HZ

with the spectrum KG over ku, and using the theorem to identify the terms in the result.

The spectral sequence follows by considering the tower of spectra

· · · → Σ4KG→ Σ2KG→ KG,

whose filtration quotients are Σ2kR[G].

4. Example computations

In this section, we analyze irreducible representations to compute the deformation ring

spectrum R[G], and then apply Corollary 4 to obtain information about the deformation

K-theory groups of several groups.

For further examples relating deformation K-theory of surface groups to gauge theory,

the reader should consult [10].

4·1. Finitely generated abelian groups

Let G be a finitely generated abelian group, with character group G∗ = Hom(G, U(1)).

Any irreducible representation is uniquely, up to isomorphism, a direct sum of characters.

The topological monoid Rep(G) is the infinite symmetric product Sym∞(G∗), and so

R[G] ≃ HZ∧G∗.

In particular, if G ∼= Zr⊕A where A is finite, then G∗ ∼= (S1)r ×A∗, and so we obtain

the following.

π∗R[G] ∼=
⊕

a∈A∗

H∗(S
1)⊗r ∼= H∗(S

1)⊗r ⊗R[A]

In particular, it is free abelian in each degree. The E2-term of the spectral sequence for

deformation K-theory is therefore

H∗(S
1)⊗r ⊗R[A]⊗ Z[β].

It remains to exclude the possibility of differentials in this spectral sequence. Either

naturality in G or the results of [8] imply that the spectral sequence degenerates at the

E2-term.
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4·2. The integer Heisenberg group

Let G be the integer Heisenberg group of upper triangular integer matrices with 1 on

the diagonal. In [7], the deformation representation ring R[G] was shown to satisfy

π∗R[G] ∼=























⊕Z if ∗ = 0,

⊕Z2 if ∗ = 1,

⊕Z if ∗ = 2,

0 otherwise.

Here the direct sum ranges over roots of unity in C; these index the irreducible repre-

sentations via the “central character.” The spectral sequence for deformation K-theory

is therefore forced to degenerate at E2, with no hidden extensions possible as all groups

involved are free. Therefore, we find that

π∗K(G) ∼=

{

⊕Z if ∗ = 0,

⊕Z2 if ∗ ≥ 1.

4·3. Z ⋊ Z/2

Let G be the semidirect product Z ⋊ Z/2, where Z/2 acts by negation on Z. It has an

abelian subgroup Z of index 2, and hence any irreducible representation has dimension

1 or 2.

The commutator subgroup of G is 2Z, and there are four 1-dimensional representations

1, σ, τ, στ . (Here we take σ to be the nontrivial representation factoring through the

“obvious” quotient map Z ⋊ Z/2→ Z/2.) Therefore, R1/PU(1) ∼= ∨4S0.

For any α ∈ S1, there is a corresponding unitary character of Z (also denoted by α)

which sends the generator to α. The induced representation Vα = IndG
Z

(α) is a two-

dimensional unitary representation whose restriction to Z is isomorphic to α⊕α−1. One

readily checks the following facts.

• Vα
∼= Vβ if and only if α = β±1.

• Vα is irreducible if and only if α 6= ±1.
• V1

∼= 1⊕ σ and V−1
∼= τ ⊕ στ .

• All 2-dimensional representations of G are either reducible or isomorphic to Vα

for some α.

As a result, the space R2/PU(2) of 2-dimensional representations modulo reducibles

is homeomorphic to [0, 1]/∂[0, 1] ≃ S1. The cofiber sequences of corollary 2 degenerate

to a single cofiber sequence

HZ∧(∨4S0)→ R[G]→ HZ∧([0, 1]/∂[0, 1]).

Therefore, π∗R[G] = 0 for ∗ > 0, and there is a short exact sequence as follows.

0 // Z // Z⊕ Zσ ⊕ Zτ ⊕ Zστ // π0R[G] // 0.

The left-hand map in this sequence is multiplication by (1 + σ)− (τ + στ).

As the homotopy of R[G] is concentrated in degree zero, the spectral sequence for the

deformation K-theory degenerates and we find

π∗K(G) ∼=

{

Z
3 if ∗ is even, ∗ ≥ 0,

0 otherwise.
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(The degeneration of the spectral sequence actually implies that the homotopy type of

the spectrum is ∨3ku.)

We note that this group is isomorphic to the amalgamated product Z/2 ∗Z/2, and the

main theorem of [11] recovers this result as part of a general formula for amalgamated

products.

4·4. Z2 ⋊ Z/4

We list one final example which is not known by methods of excision or product

formulas.

Suppose G is the semidirect product Z2 ⋊ Z/4, where the cyclic group of order 4 acts

on Z2 by the matrix
[

0 −1

1 0

]

.

Choose generators x and y for Z2. The group G has an index 4 abelian subgroup, and so

the irreducible representations have dimensions 1, 2, or 4.

More specifically, let T = Hom(Z2, U(1)) be the character group of Z
2, with action of

Z/4 by precomposition. Elementary Frobenius reciprocity breaks the irreducible repre-

sentations of G into the following types.

• Associated to each character in T fixed by Z/4, there are 4 distinct extensions to

irreducible 1-dimensional representations. These are acted on freely transitively

by the character group of Z/4.

There are precisely 2 characters in T fixed by Z/4, given by the trivial character

and the character x 7→ −1, y 7→ −1. The group of characters of G is (Z/2×Z/4)∗.

• Associated to any Z/4-orbit in T of order 2, each representative has 2 distinct

extensions to 1-dimensional representations of Z2⋊Z/2. These induce to 2 distinct

irreducible 2-dimensional representations of G determined only by the orbit. These

are interchanged by the character group of Z/4.

There is precisely 1 orbit in T of size 2, with a representative given by the character

x 7→ −1, y 7→ 1. There are then 2 irreducible representations of degree 2.

• Associated to each Z/4-orbit in T of order 4, any representative in the orbit

induces to an irreducible 4-dimensional representation of G. This is fixed by the

character group of Z/4.

The space of isomorphism classes of representations of degree 4, modulo reducibles,

is therefore the quotient of T by Z/4 (homeomorphic to S2), modulo the 3 points

corresponding to orbits of size less than 4. We can give this space a cell structure

with two 1-dimensional cells (attaching the three points reducing to the basepoint),

together with a 2-cell attached via a map trivial in homology.

One can carry out analysis as in the previous example to show that the boundary

map on the generators of the 1-cells in homology injects to a direct summand onto the

previously attached 0-cells. One can then determine that the deformation representation

ring R[G] has homotopy as follows.

π∗R[G] ∼=















Z8 if ∗ = 0,

Z if ∗ = 2,

0 otherwise.
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The spectral sequence for the deformation K-theory then degenerates at the E2-term,

and we find

π∗K(G) ∼=















Z8 if ∗ = 0,

Z
9 if ∗ is even, ∗ ≥ 0,

0 otherwise.

(The degeneration of the spectral sequence actually implies that the homotopy type of

the spectrum is (∨8ku) ∨ Σ2ku.)

5. Representation ring spectra of free groups

Let Fk be the free group on k generators x1, . . . , xk with the discrete topology. A

unitary representation of Fk consists of a choice of image of each generator. Therefore,

Rep(Fk) =
∐

n∈N

(

U(n)Ad
)k

/U(n) =
∐

n∈N

X(n, k).

The direct sum maps X(n, k)×X(m, k)→ X(m+n, k) respect stabilization, and therefore

give rise to the structure of an abelian topological monoid on X(∞, k). In particular, there

is a map of abelian topological monoids

Rep(Fk)→ Z×X(∞, k).

The spaces X(n, k) are connected and have abelian fundamental group, so the same holds

for X(∞, k).

Due to classical results of Quillen [5, Appendix Q], the homotopy group completion

map Rep(G)→ ΩB Rep(G) is characterized as inducing a localization map on homology

H∗(Rep(G))→ (π0 Rep(G))−1H∗(Rep(G)).

In particular, the map Rep(Fk) → Z ×X(∞, k) is a homotopy group completion map.

As a result, we find that

π∗(R[G]) ∼=

{

Z if ∗ = 0

π∗(X(∞, k)) if ∗ > 0

Remark 5. Ideally, one would like to prove a stability result at this point. This is not

strictly necessary to show that the given map is a group completion; this is unnecessary

for topological monoids which are homotopy commutative, since these admit a “calculus

of fractions”. See [5, Appendix Q].

Proposition 6. As a spectrum,

R[Fk] ≃ HZ ∨
(

∨kΣHZ
)

.

The group π1(R[Fk]) is isomorphic to Hom(Fk, Z), naturally in maps of free groups.

Proof. The deformation K-theory spectrum of Fk is the spectrum associated to the

E∞-H-space
∐

n∈N

[

U(n)Ad
]k
×U(n) EU(n).

We briefly sketch an identification of the homotopy type of this spectrum; a more general

decomposition of the homotopy type for free products can be found in [11].
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Recall that for a group G, there is a natural weak equivalence

GAd ×G EG ≃ ΛBG,

the free loop space on BG [1, Proposition 2.6]. Taking the k-fold fiber product over BG,

we find that there is a natural weak equivalence
[

GAd
]k
×G EG ≃Map(BFk, BG).

Naturality implies that the weak equivalence

∐

n∈N

[

U(n)Ad
]k
×U(n) EU(n) ≃ Map

(

BFk,
∐

n∈N

BU(n)

)

respects the E∞-structure, where the E∞-structure on the right-hand space is derived

from the range of the mapping space.

The spectrum associated to
∐

BU(n) is the connective K-theory spectrum ku. There-

fore, there are maps

Map
(

BFk,
∐

BU(n)
)

→ Map (BFk, Ω∞ku) ≃ Ω∞F (Σ∞(BFk)+, ku) .

This composite map is a homotopy group completion map by inspection. Therefore, the

map

KFk → F (Σ∞(BFk)+, ku)

is an isomorphism on homotopy groups in positive degrees, and the left-hand spectrum

is connective. The function spectrum is equivalent to

ku ∨

(

k
∨

Ωku

)

as a ku-module. The connective cover of this spectrum is

KFk ≃ ku ∨

(

k
∨

Σku

)

by Bott periodicity.

By theorem 3, we then find that

R[Fk] ≃ HZ ∨

(

k
∨

ΣHZ

)

.

The first homotopy group of R[Fk] has a natural isomorphism to the (−1)’st homotopy

group of F ((BFk)+, ku) by Bott periodicity, which gives rise to the natural isomorphism

π1R[Fk] ∼= Hom(Fk, Z).

Corollary 7. The eigenvalue map X(∞, k)→
[

Sym∞(S1)
]k

is a weak equivalence;

in particular, the higher homotopy groups of X(∞, k) vanish.

Proof. This follows from identification of the identity component of Ω∞R[Fk] with

X(∞, k), and the eigenvalue map with the product of the restriction maps

X(∞, k)→ X(∞, 1)k,
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which is an isomorphism on π1.

6. Simplicial interpretation of the eigenvalue map

In [6], the spectral theorem was be reinterpreted as a simplicial decomposition of the

conjugation action of U(n) on itself. We will now recall this construction.

For {ni}
p
i=1 a sequence of integers with

∑

ni ≤ n, define

Gr(n1, n2, · · · ; n) = U(n)
/

[U(n1)×U(n2)× · · · ×U(n− Σni)] .

This space is a Grassmannian parameterizing configurations (V1, V2, · · · ) of orthogonal

systems of subspaces in Cn with dim(Vi) = ni. It has a natural left action of U(n).

Define a simplicial space X. by

Xp =
∐

Pp

i=1
ni≤n

Gr(n1, n2, · · · ; n).

Face maps are given as follows:

di(V1, · · · , Vp) =















(V2, · · · , Vp) if i = 0,

(V1, · · · , Vi + Vi+1, · · · , Vp) if 0 < i < p,

(V1, · · · , Vp−1) if i = p.

The degeneracy maps are insertion of a zero-dimensional subspace.

A point of the geometric realization |X.| consists of an arrangement (V1, · · · , Vp) of

orthogonal hyperplanes and a point of ∆p, i.e. a sequence of numbers 0 ≤ t1 ≤ · · · ≤ tp ≤

1. Define a map f : |X.| → U(n) by sending this point to the matrix A such that each

space Vi is an eigenspace for A with eigenvalue e2πiti , and the orthogonal complement of

⊕Vi is acted on trivially by A. The map f is a homeomorphism of U(n)-spaces.

There is a map of simplicial spaces

X. =







∐

P

ni≤n

Gr(n1, · · · ; n)







→







∐

P

ni≤n

∗







.

The right-hand space is obtained from X. by taking the quotient by the action of U(n).

The right-hand simplicial set is Symn(S1).

By taking k-fold products, we recover the map of spaces

U(n)k ∼=
∣

∣Xk
.

∣

∣→
[

Symn(S1)
]k

.

By taking quotients by the conjugation action, we find that the map X(n, k) →
[

Symn(S1)
]k

can be expressed as the geometric realization of the following map of sim-

plicial spaces.






∐

ni,j

[

U(n)
∖

k
∏

i=1

Gr(ni,1, ni,2, · · · ; n)

]







→







∐

ni,j

∗







Therefore, one way to get estimates on the connectivity of the eigenvalue map would

be to obtain increasing bounds on the connectivity of the spaces on the left.

Note that the space

U(n)
∖

k
∏

i=1

Gr(ni,1, ni,2, · · · ; n)
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becomes fixed for n ≥ N =
∑

i,j ni,j ; this follows because any configuration of hyper-

planes of this type is contained within its span, which is of dimension less than or equal

to N .

Proposition 8. The space

Yn = U(n)
∖

k
∏

i=1

Gr(ni,1, ni,2, · · · ; n)

is contractible for large n.

Proof. This sequence of spaces stabilizes for large n, so it suffices to show that the

stabilization map

s : Yn → Ykn

is null-homotopic.

Write Ckn ∼= V ⊕k, where V = Cn. For 2 ≤ i ≤ k and 0 ≤ θ ≤ π/4, let Ai(θ) be the

block element of U(kn)

















cos θI 0 sin θI

0 I · · · 0 · · ·
...

...

− sin θI 0 · · · cos θI · · ·
...

...

















,

which rotates the first copy of V to the ith copy, leaving the other copies fixed. (For

simplicity, we define A1(θ) to be the identity.)

One then checks that we have a well-defined homotopy

(H1, H2, . . . , Hk, θ) 7→ (A1(θ)s(H1), A2(θ)s(H2), . . . , Ak(θs(Hk)))

from the stabilization map s to the map

(H1, H2, . . . , Hk) 7→ (H1 ⊕ 0, 0⊕H2 ⊕ 0, . . . , 0⊕Hk).

However, the right-hand side is constant after the quotient by the action of U(kn).

We find that the stable eigenvalue map of the introduction is a homotopy equivalence

from this proposition and the simplicial decomposition of the stable eigenvalue map.

Stability questions naturally give rise to the following question: How does the connec-

tivity of these spaces of hyperplane arrangements depend on the ni,j and n?

One can obtain some partial answers to this question. For example,

U(n)
∖

[Gr(n1; n)×Gr(n2; n)]

is always contractible. Given an n1-dimensional plane V and an n2-dimensional plane W

in Cn, let p be the orthogonal projection from W to V and q = pT the projection from V

to W . The singular value decomposition in linear algebra shows that this configuration is

determined up to isomorphism by the eigenvalues σ2
1 ≥ σ2

2 ≥ . . . of pq, which agree with

those of qp up to additional zeros. (This method was indicated to us by Neil Strickland.)
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