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Abstract. We prove a general result that relates certain pushouts of Ek-
algebras to relative tensors over Ek`1-algebras. Specializations include a num-

ber of established results on classifying spaces, resolutions of modules, and

(co)homology theories for ring spectra. The main results apply when the cat-
egory in question has centralizers.

Among our applications, we show that certain quotients of the dual Steen-
rod algebra are realized as associative algebras over HFp ^ HFp by attaching

single E1-algebra relation, generalizing previous work at the prime 2. We

also construct a filtered E2-algebra structure on the sphere spectrum, and the
resulting spectral sequence for the stable homotopy groups of spheres has E1-

term isomorphic to a regrading of the E1-term of the May spectral sequence.

1. Introduction

For commutative monoids in any symmetric monoidal category, pushouts are
often straightforward to compute: the pushout of a diagram B Ð A Ñ R of
commutative monoids is equivalent to a relative tensor B bA R. Moreover, the
tensor product often passes nicely to a derived setting by replacing it with the
two-sided bar construction BarpB,A,Rq that calculates the homotopy pushout.
By contrast, computing pushouts and homotopy pushouts of associative monoids
is more involved, because there is no easy rewriting procedure to separate terms
involving B, R, and A. This becomes rapidly clear when attempting to apply
results like the Seifert–van Kampen theorem or compute pushouts in the category
of associative rings.

Homotopy-theoretically, associativity and commutativity are part of a very broad
range of levels of commutativity. An E0-algebra has a unit, but no multiplication
that it is the unit for; an E1-algebra has a multiplication that is associative, up
to higher coherences; an E2-algebra has a multiplication with structure related to
the braid axioms; and this hierarchy proceeds through higher and higher stages
until E8-algebras, which are associative and commutative up to higher coherences.
These first became prominent as part of a recognition principle for iterated loop
spaces [BV73; May72], but now play an important role in higher algebra.

Computing pushouts of Ek-algebras is, by and large, a gigantic pain in the neck.
Our main result in this paper asserts that, in certain cases, homotopy pushouts

in Ek-algebras can be computed by a (derived) tensor product over an Ek`1-algebra.

Theorem (6.3). Suppose that C is a presentable Ek`1-monoidal 8-category with
monoidal structure b, that B is an Ek`1-algebra in C, A Ñ B is a map of Ek-
algebras in C, and that EA is an Ek`1-algebra freely generated by A. Given R any
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Ek-algebra in the category LModB of left B-modules, the induced natural diagram

B bAbR B bR

B bR B bEA R

mb1

1bm m

m

is a homotopy pushout diagram in the category of Ek-algebras in LModB.

Remark 1.1. We need to be able to discuss Ek-algebras, and their homotopy
pushouts, in the category of left modules over an Ek`1-algebra. To some degree,
this forces us to adopt a foundational setup that can handle such structure.

Throughout this paper we will use quasicategories as a model for 8-categories,
using [Lur09] and [Lur17] as references. However, let us informally unpack the
hypotheses of the main theorem. Asking that C is an8-category, up to equivalence,
is the same as asking to have spaces of maps between objects. Presentability of
C asks that C has homotopy limits and colimits, and that C is generated under
homotopy colimits by a set of well-behaved objects. Being a monoidal 8-category
asks that we have an essentially associative tensor productb on C that is compatible
with mapping spaces; being monoidal presentable means that the operation X bY
has to preserve homotopy colimits in each variable X and Y separately. For this
tensor product to be an Ek`1-monoidal structure, it also has to come equipped
with a large amount of coherence information expressing the degree to which b is
commutative.

The benefit of starting with these types of hypotheses is that they are weak
enough to apply in a very wide variety of circumstances, such as the categories
of spaces, spaces over a fixed Ek`1-space, spectra, modules over a structured ring
spectrum, graded or filtered versions of the same, and many others.

1.1. Actions. This particular endeavor will pass through a number of technical
results. Before we embark, we would like to spend some time mapping out the
underlying structure of the proof.

The first observation is that, by base change, the general case of our main theo-
rem will follow from the case where the algebra B is the enveloping algebra EA, so
it suffices to show that there is a homotopy pushout diagram

EAbAbR EAbR

EAbR R

mb1

1bm m

m

of Ek-algebras in LModEA.
The next reduction is to the associative case. The Dunn additivity theorem

implies that Ek`1-algebras are equivalent to E1-algebras in the category of Ek-
algebras [Dun88]. The main result will follow if we can find a sufficiently general
result covering the case k “ 0: one whose hypotheses will apply when C is a category
of Ek-algebras. Unfortunately, even if C is monoidal presentable, the category of
Ek-algebras in C is typically not. Even in ordinary algebra, for example, taking
the tensor product A b B of two associative algebras typically does not preserve
colimits of associative algebras in each variable.

This leads us to understanding module structures over “free” algebras. If we
have a monoidal category C and we have an E0-algebra 1 Ñ X, we can consider
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the enveloping algebra EX, an E1-algebra generated by it. In many circumstances,
we can give a simpler description of left EX-modules. Such simpler descriptions are
automatic if M has an endomorphism object EndpMq, because then unital maps
X Ñ EndpMq are equivalent to algebra maps EX Ñ EndpMq by the universal
property of EX.

Unfortunately, in categories of Ek-algebras these endomorphism objects rarely
exist, but there is a closely related concept called the centralizer [Lur17, §5.3.1].
In Section 5 we will show that, when C has centralizers, the category of left EX-
modules is equivalent to a category of objects with an action of X.

Theorem (5.3). Suppose that C is a monoidal 8-category with pullbacks, that M

is left-tensored over C, and that M has centralizers in C.
If X is an E0-algebra in C and EX is an enveloping algebra for X, then there is

an equivalence of 8-categories LModEXpMq Ñ LActXpMq between left EX-modules
in M and objects with a unital left action map λ : X bM ÑM .

With this in mind, to show that we have a homotopy pushout in the category of
left EX modules, it suffices to show that it is a homotopy pushout in the category
LActX of objects with an action of X. To do this, we need to be able to compute
the space of maps between two objects with action maps. Section 4 is devoted to
understanding this, and to proving the following result.

Proposition (4.9). Suppose that the forgetful functor LActXpMq Ñ M has a left
adjoint L. Then there exists a natural transformation λ : LpXbMq Ñ LpMq, such
that for any object M with left action λM : X bM ÑM , the diagram

LpX bMq LM

LM M

λ

LpλM q ε

ε

is a homotopy pushout in LActXpMq.

These results are proved with the aid of some results on computing centralizers,
and mapping spaces between sections, using the twisted arrow category (Lemma 2.4
and Theorem 3.8); these may be of some independent utility.

1.2. Applications to stable homotopy. Because of the broad range of cases
where this result holds, it specializes to several topics of classical and more modern
interest. Applied algebraically, this result recovers the Koszul resolution of a mod-
ule over a tensor algebra. Applied to the category of pointed spaces, it recovers
information about the James construction on a space. Applied to categories of
of ring spectra, it recovers features important to Basterra and Mandell’s study of
homology and cohomology theories for Ek ring spectra. We will discuss several of
these examples in Section 8. However, our principal interest is in stable homotopy
theory.

As one specific application, we can build on a description of the mod-p Eilenberg–
Mac Lane spectra HFp as a Thom spectrum, due to Hopkins and Mahowald, to
obtain the following alternative description.

Theorem (8.1). Fix a prime p, and consider the pair of E3-algebra maps

FreeE3
pS0q Ñ S
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from the free E3-algebra on S0, classifying 0 and p respectively. Then the (derived)
smash product is the Eilenberg–Mac Lane spectrum HFp:

HFp » S ^
FreeE3 pS

0q
S

This allows us to construct the following unusual filtration on the sphere spec-
trum. It is constructed by deliberately pushing the element p P π0pSq into filtration
1 in a category of filtered E2-algebras; this is inspired by techniques used by Baker
[Bak14] and Szymik [Szy14].

Theorem (8.3, 8.4). For any prime p, there exists a lift of the sphere spectrum
to an E2-algebra in filtered spectra, giving rise to a spectral sequence of graded-
commutative rings with abutment π˚S^p .

For p “ 2, the E1-term is a polynomial algebra

F2rhi,js,

where hi,j are defined for i ě 1, j ě 0, with total degree and filtration given by the
bidegree p2i`j ´ 2j ´ 1, 2i`j´1q.

For p odd, the E1-term is

Fprvis b Λrhi,js b Fprbi,js,

where the bidegree of vi is p2pi ´ 2, piq for i ě 0, of hi,j is p2pi`j ´ 2pj ´ 1, pi`jq
for i ě 1, j ě 0, and of bi,j is p2pi`j`1 ´ 2pj`1 ´ 2, pi`j`1q for i ě 1, j ě 0.

This E1-term is isomorphic to a regrading of the E1-term of the May spectral
sequence, but converges directly to stable homotopy rather than the Adams E2-
term. The spectral sequence also has quite different behavior (see Remark 8.5).

Our second application generalizes a result from [BHL+21] to odd primes: taking
quotients by “central” classes in an Ek-algebra also kills Ek`1-operations. It allows
us to prove the following result, analyzing associative quotients of the dual Steenrod
algebra. The case of p “ 2, where killing a generator in an E1-fashion precisely
eliminated the free E2-algebra on it, was a mystery that helped us identify the main
result of this paper.

Theorem (8.9). Let p be an odd prime and A “ HFp ^HFp be the commutative
ring spectrum whose coefficient ring is the dual Steenrod algebra

A˚ – Λrτ0, τ1, . . . s b Fprξ1, ξ2, . . . s.

Then the free quotient A{{τn in the category of associative A-algebras has coefficient
ring given by the quotient

A˚{pξn`1, ξn`2, . . . , τn, τn`1, . . . q,

and A{{τ̄n has coefficient ring given by the quotient

A˚{pξ̄n`1, ξ̄n`2, . . . , τ̄n, τ̄n`1, . . . q.

This result relies implicitly on calculations of the Dyer–Lashof operations by
Steinberger [BMMS86].
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2. Functor categories

Our goal in this section is to collect together preliminary results about functor
8-categories, with a particular emphasis on computing mapping spaces.

Reminder 2.1. Recall that for an8-category C, we have the arrow category ArpCq “
Funp∆1,Cq, and we have the twisted arrow category TwpCq. In both cases, the
objects are maps in C. Morphisms f Ñ g in ArpCq are commutative diagrams

X Y

Z W,

f

g

while morphisms f Ñ g in TwpCq are commutative diagrams

X Y

Z W.

f

g

given by precomposition and postcomposition with morphisms in C. The source
and target determine forgetful maps ArpCq Ñ Cˆ C and TwpCq Ñ Cop ˆ C.

Proposition 2.2. Given functors α, β : K Ñ C, in the functor8-category FunpK,Cq
we have

MapFunpK,Cqpα, βq » holim
f : iÑj

MapCpαpiq, βpjqq.

Here the homotopy limit is taken over f in the twisted arrow category TwpKq.

Proof. This is shown by Glasman [Gla16, Lemma 2.3] (and, later, Gepner–Haugseng–
Nikolaus [GHN17, Proposition 5.1]), where it is equivalently described as an end

ż iPK

MapCpαpiq, βpiqq. �

Corollary 2.3. Suppose that we have maps f : X0 Ñ X1 and g : Y0 Ñ Y1 in C,
viewed as objects in ArpCq. Then there is a homotopy pullback diagram of function
spaces:

MapArpCqpf, gq MapCpX0, Y0q

MapCpX1, Y1q MapCpX0, Y1q
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Proof. This follows by identifying the twisted arrow category of ∆1 “ t0 Ñ 1u,
which is an ordinary discrete category, with the 3-object poset

p0 Ñ 0q

p1 Ñ 1q p0 Ñ 1q

parametrizing cospans. �

Lemma 2.4. Suppose that p : CÑ K is a fibration of 8-categories and α, β : K Ñ

C are sections. Then there is an equivalence

MapFunKpK,Cqpα, βq » holim
f : iÑj

MapCpαpiq, βpjqqf .

Here the limit is taken over f : i Ñ j in the twisted arrow category TwpKq, and
MapCpX,Y qf denotes the homotopy fiber of MapCpX,Y q Ñ MapKppX, pY q over
f .

Proof. Under the identification of Proposition 2.2, the identity natural transforma-
tion idK Ñ idK in the functor category FunpK,Kq is represented by the element

tidKu » holim
f : iÑj

tfu Ă holim
f : iÑj

MapKpi, jq.

The section category is a (homotopy) fiber product:

FunKpK,Cq “ FunpK,Cq ˆ
FunpK,Kq

tidKu

Therefore, because mapping spaces in this pullback 8-category are (homotopy)
fiber products of function spaces and these commute with homotopy limits, the
space MapFunKpK,Cqpα, βq is the homotopy fiber product

holim
f : iÑj

ˆ

MapCpαpiq, βpjqq ˆ
MapKpi,jq

tfu

˙

.

By definition, this is the homotopy limit of MapCpαpiq, βpjqqf . �

Corollary 2.5. Suppose that p : CÑ K is a coCartesian fibration of 8-categories,
allowing any map f : i Ñ j in K to be lifted to a functor f! : Ci Ñ Cj from the
fiber over i to the fiber over j. Then for any sections α, β : K Ñ C there is an
equivalence

MapFunKpK,Cqpα, βq » holim
f : iÑj

MapCj
pf!αpiq, βpjqq.

Proof. The functor f! is defined so that there is a map ηx : x Ñ f!pxq over f with
a universal property: for any y in C, the diagram

MapCpf!x, yq MapCpx, yq

MapKpj, pyq MapKpi, pyq

p´q˝ηx

p´q˝f

is a homotopy pullback [Lur09, Proposition 2.4.4.3]. In particular, for any y P Cj ,
taking the fiber over tidju P MapKpj, jq “ MapKpj, pyq shows that the map

MapCj
pf!x, yq Ñ MapCpx, yqf
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is an equivalence. We then substitute this into Lemma 2.4. �

The next lemma is typically part of the equivalence between 8-categories and
complete Segal spaces; it is included for reference.

Lemma 2.6. A functor f : C Ñ D between 8-categories is an equivalence if the
induced maps C» Ñ D» and ArpCq» Ñ ArpDq» of maximal subgroupoids are weak
equivalences of Kan complexes.

Proof. We need to show that such a functor f is fully faithful and essentially surjec-
tive in the sense of [Lur09, §1.2.10]: it induces homotopy equivalences MapCpX,Y q Ñ
MapCpfX, fY q and every object in D is equivalent to one in the image. The isomor-
phism π0pC

»q Ñ π0pD
»q shows that f induces a bijection on homotopy equivalence

classes of objects: in particular, it is essentially surjective. To show full faithfulness,
for any objects X and Y of C there is a natural homotopy pullback diagram

MapCpX,Y q ArpCq»

tX,Y u C» ˆ C»,

and similarly for D. Therefore, f induces homotopy equivalences MapCpX,Y q Ñ
MapDpfX, fY q, which shows full faithfulness. �

3. Centralizers and centers

In categories where there are no “endomorphism” objects, such as the category
of groups, the center of an object M plays a very similar role. We will begin by
recalling the definitions from [Lur17, §5.3.1].

Reminder 3.1. A final object in an 8-category C is an object Z such that, for any
X, the mapping space MapCpX,Zq is contractible.

Definition 3.2 ([Lur17, Definition 5.3.1.2]). Suppose that C is monoidal and that
M is left-tensored over C. A centralizer of a morphism f : M Ñ N in M is a final
object in the 8-category

pC1{q ˆpM1bM{q
pM1bM{{N q.

Here the functor C1{ ÑM1bM{ is given by tensoring with M .
More explicitly, it is a final object Zpfq in C in a category of E0-algebras Z in C

with a chosen (coherently) commuting diagram

Z bM

1bM N.

ηbid

f

Centralizers are functorial, in the following sense.

Lemma 3.3. Suppose that C is monoidal, that M is left-tensored over C, and that
morphisms f in M have centralizers Zpfq in C. Then there exists an essentially
unique functor

Z : TwpMq Ñ AlgE0
pCq

extending this definition.
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Proof. The diagram of 8-categories

C1{ ÑM1bM{ ÐM1bM{{N

is functorial in f : 1 bM Ñ N P TwpMq, and therefore so is the fiber product
category. Since centralizers exist, each of these categories has a final object Zpfq.
By [Lur09, Proposition 2.4.4.9] this can be made into a functorial assignment of
final object, which we can compose with the projection to C1{ to get a functor
Z : TwpMq Ñ C1{. �

Reminder 3.4. If M is left-tensored over C, there is a category LModpMq [Lur17,
Definition 4.2.1.13] that can be identified with an 8-category of pairs pA,Mq of an
algebra A in C and a left A-module M in M. This decomposition corresponds to
a pair of forgetful functors U : LModpMq Ñ M and V : LModpMq Ñ AlgE1

pCq.
Both of these are categorical fibrations [Lur09, §2.2.5]; this allows us to compute
homotopical pullbacks as ordinary pullbacks.

Definition 3.5 ([Lur17, Definition 5.3.1.6]). Suppose that C is monoidal and that
M is left-tensored over C. A center of an object M of M is a final object in the
8-category

LModpMq ˆM tMu.

More explicitly, it is a final object ZpMq in C in a category of E1-algebras A with
a chosen A-module structure on M .

Remark 3.6. Unlike the centralizers in Lemma 3.3, centers do not enjoy a very
general notion of functoriality.

Centers and centralizers are closely connected: a center ZpMq of an object M
is equivalent to a centralizer ZpidM q of the identity morphism of M by [Lur17,
Proposition 5.3.1.8]. Our first goal will be to expand on these definitions in terms
of mapping spaces.

Proposition 3.7. Suppose that we have an E0-algebra Z in C and a diagram

Z bM

1bM N

ηbid

f

in M. Then this diagram makes Z into a centralizer Zpfq if and only if, for any
E0-algebra A in C, the diagram

MapE0
pA,Zq MapMpAbM,Nq

tfu MapMp1bM,Nq

is a homotopy pullback diagram.

Proof. As stated, a centralizer of f is a final object in the 8-category

C1{ ˆM1bM{
M1bM{{N .
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An object λA in this consists of a map ηA : 1Ñ A, an action map λA : AbM Ñ N ,
and a homotopy making the diagram

AbM

1bM N

λA
ηAb1

f

coherently commutative. Given two objects pηA, λAq and pηB , λBq in this category,
we would like to compute the mapping space between them in this fiber product
8-category. The mapping space between their images in C1{ is MapE0

pA,Bq, the
mapping space between their images in M1bM{ is the homotopy fiber over ηB b 1
of

MapMpAbM,B bMq
p´q˝ηAb1
ÝÝÝÝÝÝÑ MapMp1bM,B bMq,

and the mapping space between their images in M1bM{{N is the homotopy fiber of

MapMpAbM,BbMq Ñ MapMpAbM,NqˆMapMp1bM,NqMapMp1bM,BbMq

over pλA, ηB b 1q. This allows us to describe the mapping spaces in this fiber
product as computed by a homotopy pullback diagram:

MapppηA, λAq, pηB , λBqq MapE0
pA,Bq

tλAu MapMpAbM,Nq ˆMapMp1bM,Nq tfu

In order for pηZ , λZq to be a final object in this category, the pullback space
MapppηA, λAq, pηZ , λZqq must always be contractible. This is equivalent to knowing
that the map

MapE0
pA,Zq Ñ MapMpAbM,Nq ˆMapMp1bM,Nq tfu

is a homotopy equivalence over the path component of any λA. However, all path
components appear as some λA: a point of MapMpA bM,Nq ˆMapMp1bM,Nq tfu
is equivalent to a choice of λA making pηA, λAq into an object of this category.
Therefore, Z is a centralizer if and only if the diagram

MapE0
pA,Zq MapMpAbM,Nq

tfu MapMp1bM,Nq

is a homotopy pullback for all E0-algebras A. �

This characterization of centralizers in terms of mapping spaces allows us to
determine the structure of centralizers in diagram categories. Recall that if M is left-
tensored over C, then FunpK,Mq is left-tensored over FunpK,Cq using the pointwise
tensor product [Lur17, Remark 2.1.3.4]. The diagonal functor C Ñ FunpK,Cq is
compatible with this pointwise tensor, making FunpK,Mq left-tensored over C as
well, with an object-by-object definition:

pAb F qpXq “ Ab pF pXqq
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Theorem 3.8. Suppose that M is left-tensored over C and that M has centralizers.
For a natural transformation θ : K ˆ ∆1 Ñ M between diagrams F,G : K Ñ M,
the homotopy limit

holim
γPTwpKq

Zpθpγ, uqq

(if it exists) is a centralizer Zpθq in FunpK,Mq. Here u is the nonidentity morphism
in ∆1.

Proof. For any fixed E0-algebra A and γ : M Ñ N with image θpγ, uq : F pMq Ñ
GpNq, the diagram

MapE0
pA,Zpθpγqqq MapMpAb F pMq, GpNqq

tθpγ, uqu MapMpF pMq, GpNqq

is a homotopy pullback diagram in C by Proposition 3.7 and is functorial in the
twisted arrow category TwpKq. Taking homotopy limits over TwpKq, Lemma 2.4
shows that we get a homotopy pullback diagram

holimγPTwpKqMapE0
pA,Zpθpγ, uqqq MapFunpK,MqpAb F,Gq

tθu MapFunpK,MqpF,Gq

that is natural in A. If the homotopy limit holimγPTwpKq Zpθpγ, uqq exists in C,
the above homotopy pullback diagram and Proposition 3.7 then show that it is a
centralizer of θ in the functor category. �

Corollary 3.9. For a map g : M Ñ N in M, the center ZArpMqpgq » ZArpMqpidgq,
where idg is viewed as a map in the arrow category ArpMq, is part of a homotopy
pullback diagram

ZArpMqpidgq ZpMq

ZpNq Zpgq.

The next result makes explicit that the center serves as an endomorphism object
among algebras acting on M : not only is ZpMq final among algebras acting on
M , but a map of algebras A Ñ B over ZpMq is equivalent to a map of algebras
compatible with action on M .

Proposition 3.10. For an object M P M with center ZpMq in C, there is an
equivalence

AlgE1
pCq{ZpMq » LModpMq ˆM tMu

between the category of E1-algebras A over ZpMq and the category of E1-algebras
A together with an A-module structure on M .

Proof. As in Definition 3.5, the center ZpMq is a final object in the category
LModMˆMtMu.
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The forgetful map LModpMqˆM tMu Ñ AlgE1
pCq is a right fibration by [Lur17,

Corollary 4.7.1.42], which means that for any map B Ñ C of algebras acting on M
there is a natural homotopy pullback diagram

MapLModpMqˆMtMu
pA,Bq MapLModpMqˆMtMu

pA,Cq

MapAlgE1 pCq
pA,Bq MapAlgE1 pCq

pA,Cq

by [Lur09, Proposition 2.4.4.3]. Taking C “ ZpMq, the upper-right space is con-
tractible. Taking homotopy fibers of the horizontal maps, we find that the forgetful
functor induces an equivalence

MapLModpMqˆMtMu
pA,Bq Ñ MapAlgE1 pCq{ZpMq

pA,Bq

as desired. �

4. Actions

In this section, we will assume that C is a monoidal 8-category and that M

is left-tensored over C. To be more precise about this, we will begin with some
background about how coherent left-tensorings are handled.

Reminder 4.1. There is an ordinary category LMb which is the universal example
of a symmetric monoidal category with an algebra a and a left a-module m [Lur17,
Notation 4.2.1.6]. The objects of LMb are formal tuples of these objects, and the
maps are generated by a unit pq Ñ paq, an associative unital product pa, aq Ñ paq,
and an associative unital left action pa,mq Ñ pmq. The 8-category LMb is the
nerve of LMb.

A monoidal category C with a category M left-tensored over it is encoded by
a symmetric monoidal functor Ψ from LMb to 8-categories; this sends a to a
monoidal 8-category Ψpaq “ C and sends m to an 8-category Ψpmq “ M with a
left action of C. This functor is equivalently encoded by a coCartesian fibration
Cb Ñ LMb, whose fiber over X is ΨpXq.

Definition 4.2. Let σ : ∆2 Ñ LMb represent the sequence of maps

pmq Ñ pa,mq Ñ pmq.

Here the first map is induced by the unit of the algebra a, and the second map
represents the left action of a on m.

Reminder 4.3. We can now form the fiber product B “ ∆2ˆLMb Cb. The functor
B Ñ ∆2 represents the restriction to a ∆2-shaped diagram of 8-categories and
functors

CˆM

M M,

bp1,´q

id

commuting up to natural isomorphism. We will now discuss categories of sections:
maps ∆2 Ñ Cb over LMb, or equivalently ∆2 Ñ B over ∆2. Sections make it
possible to discuss a category whose objects are the following data:

(1) objects M0,M1,M2 in M and Y P C,
(2) maps p1,M0q Ñ pY,M1q, Y bM1 ÑM2, and M0 ÑM2,
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(3) a coherence expressing commutativity of the resulting diagram

1bM0 Y bM1

M0 M2.

»

Proposition 4.4. Given two sections

sM “ pM0 Ñ pX,M1q ÑM2q and

sN “ pN0 Ñ pY,N1q Ñ N2q

in the functor category FunLMbp∆2,Cbq, the mapping space between them is a
homotopy pullback

MapFun
LMb

p∆2,CbqpsM , sN q MapMpM2, N2q

MapE0
pX,Y q ˆMapArpMqpM0 ÑM1, N0 Ñ N1q MapMpX bM1, N2q.

Given two sections

tM “ ppX,M1q ÐM0 ÑM2q and

tN “ ppY,N1q Ð N0 Ñ N2q

in the functor category FunLMbpΛ2
0,C

bq, the mapping space between them is the
homotopy pullback

MapFun
LMb

pΛ2
0,C

bqptM , tN q MapMpM2, N2q

MapE0
pX,Y q ˆMapArpMqpM0 ÑM1, N0 Ñ N1q MapMpM0, N2q.

Proof. By Corollary 2.5, the mapping space between the sections sM and sN in
MapFun

LMb
p∆2,Cbq is the homotopy limit of the following commutative diagram,

indexed by the twisted arrow category of ∆2:

MapMpM2, N2q

MapCpX,Y q ˆMapMpM1, N1q MapMpX bM1, N2q

MapMpM0, N0q MapCp1, Y q ˆMapMpM0, N1q MapMpM0, N2q

By first taking pullback of the two maps contained in the left side of the diagram,
we can re-express this homotopy limit as the desired pullback. The mapping space
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between sections tM and tN in FunLMbpΛ2
0,C

bq is similarly computed by the ho-
motopy limit of the subdiagram

MapCpX,Y q ˆMapMpM1, N1q

MapMpM0, N0q MapCp1, Y q ˆMapMpM0, N1q MapMpM0, N2q,

again computed by first taking homotopy pullback of the left portion of the diagram.
�

Corollary 4.5. For sections sM , sN over ∆2 or tM , tN over Λ2
0 such that the maps

M0 ÑMi and N0 Ñ Ni are all equivalences, we have a homotopy pullback diagram

MappsM , sN q MapMpM0, N0q

MapE0pX,Y q ˆMapMpM0, N0q MapMpX bM0, N0q

of function spaces in FunLMbp∆2,Cbq, and a natural equivalence

MapptM , tN q Ñ MapE0
pX,Y q ˆMapMpM0, N0q.

of function spaces in FunLMbpΛ2
0,C

bq.

Definition 4.6. For an E0-algebra X in C and an object M in M, a left action of
X is a map λM : X bM ÑM with a commutative diagram

X bM

1bM M.

λMηb1

»

Our ultimate goal is to relate actions of X to module structures over an algebra
freely generated by X; this will occur when the category M has centralizers in
C. To prepare for this, the remainder of this section is devoted to understanding
categories of objects with action, and in particular spaces of maps between such
objects.

Definition 4.7. The categories LActXpMq, of objects with left action by X, and
LActpMq, of pairs of an E0-algebra and an object it acts on, are the 8-categories
defined by the following pullback squares:

LActXpMq LActpMq FunLMbp∆2,Cbq

tXu ˆM AlgE0
pMq ˆM FunLMbpΛ2

0,C
bq.

Here the rightmost-bottom functor AlgE0
pMqˆMÑ FunLMbpΛ2

0,Cq sends pX,Mq
to the diagram

X bM

1bM M.

ηb1

»
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Proposition 4.8. Suppose that C is a monoidal 8-category and that M is left-
tensored over C.

The functor LActpMq Ñ FunLMbp∆2,Cbq is fully faithful, with essential image
consisting of those sections sM “ pM0 Ñ pX,M1q Ñ M2q such that M0 Ñ Mi are
equivalences.

If X is an E0-algebra in C and M and N are objects in LActXpMq, the natural
diagram

MapLActXpMqpM,Nq MapMpM,Nq

MapMpM,Nq MapMpX bM,Nq

is a homotopy pullback diagram. Here the top and left-hand maps are forgetful,
while the bottom map is f ÞÑ λN ˝ p1b fq and the right-hand map is f ÞÑ f ˝ λM .

Proof. Corollary 4.5 shows that the map AlgE0
pCqˆMÑ FunLMbpΛ2

0,C
bq is fully

faithful, with essential image consisting of those sections such that M0 Ñ M1 and
M0 Ñ M2 are equivalences. The pullback map LActpMq Ñ FunLMbp∆2,Cbq is
therefore fully faithful, with mapping spaces computed as above.

To compute mapping spaces in LActXpMq for X a fixed E0-algebra, we have to
take the fiber product over AlgE0

pCq with tXu. For objects M and N with action
by X, we form the homotopy fiber product

MapLActpMqppX,Mq, pX,Nqq ˆMapAlgE0 pCq
pX,Xq tidXu

which is the desired pullback diagram by Corollary 4.5. �

Proposition 4.9. Suppose that the forgetful functor U : LActXpMq Ñ M has a
left adjoint L. Then there exists a natural transformation λ : LpX b P q Ñ LpP q,
such that for any object M P LActXpMq with left action λM : X b UM Ñ UM ,
the diagram

LpX b UMq LUM

LUM UM

λ

LpλM q ε

ε

is a homotopy pushout in LActXpMq.

Proof. The action of X on LpP q determines a composite

X b P Ñ X b LpP q Ñ LpP q

in M, whose adjoint is a natural map λ : LpXbP q Ñ LpP q. This has the property
that for any map M Ñ N in LActXpMq, the composite

LpX b UMq
λ
ÝÑ LpUMq Ñ N

is adjoint to the map X b UM Ñ X b UN
λN
ÝÝÑ UN .



Ek-PUSHOUTS AND Ek`1-TENSORS 15

The adjunction means that, by Proposition 4.8, there is a natural homotopy
pullback diagram

MapLActX pM,Nq MapLActX pLUM,Nq

MapLActX pLUM,Nq MapLActX pLpX b UMq, Nq.

ε˚

ε˚ λ˚

LpλM q
˚

Since N is an arbitrary object in LActX , this implies that there is a corresponding
homotopy pushout diagram for M . �

Proposition 4.10. For an object M PM with center ZpMq, there is an equivalence

AlgE0
pCq{ZpMq » LActpMq ˆM tMu

between the category of E0-algebras over ZpMq and the category of E0-algebras act-
ing on M .

Proof. For algebras A and B acting on M , there is a homotopy pullback diagram

MapLActpMqppA,Mq, pB,Mqq MapMpM,Mq

MapAlgE0 pCq
pA,Bq ˆMapMpM,Mq MapMpAbM,Mq

by Corollary 4.5. Taking the fiber product over MapMp1bM,Mq with the canonical
equivalence 1bM ÑM , we get a homotopy pullback

MapLActpMqˆMtMu
pA,Bq tidMu

MapAlgE0 pCq
pA,Bq MapM1bM{

pAbM,Mq.

This is natural in B, and the right-hand vertical map is independent of B. Natural-
ity of this diagram in B then shows that, for any map B Ñ C in LActpMqˆMtMu,
we get a homotopy pullback diagram

MapLActpMqˆMtMu
pA,Bq MapLActpMqˆMtMu

pA,Cq

MapAlgE0 pCq
pA,Bq MapAlgE0 pCq

pA,Cq.

Taking C “ ZpMq, a final object in the category of E0-algebras with a unital action
on M by definition, makes the upper-right corner contractible. Therefore, we find
that the forgetful functor induces an equivalence

MapLActpMqˆMtMu
pA,Bq Ñ MapAlgE0 pCq{ZpMq

pA,Bq

as desired. �

Remark 4.11. The above proof shows that, up to equivalence, the forgetful functor
LActpMq ˆM tMu Ñ AlgE0

pMq is a right fibration, which is classified by ZpMq
when it exists.
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5. Actions by free algebras and centers

Definition 5.1. Suppose that X is an E0-algebra in a monoidal 8-category C. An
enveloping algebra for X is an E1-algebra EX with a map X Ñ EX of E0-algebras
such that, for any E1-algebra in C, the composite

MapAlgE1 pCq
pEX,Aq Ñ MapAlgE0 pCq

pEX,Aq Ñ MapAlgE0 pCq
pX,Aq

is an equivalence.

Proposition 5.2. Suppose that C is a monoidal 8-category and that M is left-
tensored over C. Let A be an E1-algebra in C and f : X Ñ A a map of E0-algebras.
Consider the commutative diagram

LModApMq LActApMq LActXpMq

M.

If M has centralizers, then for any M PM, the induced map on fibers over tMu is
equivalent to the map of spaces

MapAlgE1 pCq
pA,ZpMqq Ñ MapAlgE0 pCq

pX,ZpMqq

induced by forgetting to E0-algebras and precomposing with f .

Proof. The horizontal functors in this diagram are the composites

LModpMq ˆAlgE1 pCq
tAu Ñ LActpMq ˆAlgE0 pCq

tAu Ñ LActpMq ˆAlgE0 pCq
tXu.

Taking fiber products with tMu over M, by Propositions 3.10 and 4.10 and we get
the diagram

AlgE1
pCq{ZpMqˆAlgE1 pCq

tAu Ñ AlgE0
pCq{ZpMqˆAlgE0 pCq

tAu Ñ AlgE0
pCq{ZpMqˆAlgE0 pCq

tXu.

However, fibers of overcategories are mapping spaces, and so this is equivalent to
the sequence of maps

MapAlgE1 pCq
pA,ZpMqq Ñ MapAlgE0 pCq

pA,ZpMqq Ñ MapAlgE0 pCq
pX,ZpMqq,

as desired. �

Theorem 5.3. Suppose that C is a monoidal 8-category with pullbacks, that M is
left-tensored over C, and that M has centralizers in C.

If X is an E0-algebra in C and EX is an enveloping algebra for X, then the
forgetful functor

LModEXpMq Ñ LActXpMq

is an equivalence of 8-categories.

Proof. By Proposition 5.2, there is a forgetful map LModEXpMq Ñ LActXpMq
whose fiber over any tMu is the equivalence

MapAlgE1 pCq
pEX,ZpMqq Ñ MapAlgE0 pCq

pX,ZpMqq

of spaces. The map on maximal subgroupoids LModEXpMq
» Ñ LActXpMq

» is
then a map of spaces over M» that is an equivalence on the fiber over any object
tMu, and therefore a weak equivalence.
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Applying the same result to the arrow category ArpMq “ Funp∆1,Mq, which
has centralizers in C by Theorem 3.8, we find that there is an equivalence

ArpLModEXpMqq
» Ñ ArpLActXpMqq

».

By Lemma 2.6, the map LModEXpMq Ñ LActXpMq is then an equivalence. �

Theorem 5.4. Suppose that C is a monoidal 8-category with pullbacks, that M is
left-tensored over C, and that M has centralizers in C.

Suppose X is an E0-algebra in C and EX is an enveloping algebra for X. For
M any left EX-module, the induced natural diagram

EX bX bM EX bM

EX bM M

µb1

1bλM m

m

is a homotopy pushout diagram in LModEXpMq.

Proof. There is a natural equivalence

MapLModEXpMq
pEX b Y,Nq » MapMpY,Nq

by [Lur17, Corollary 4.2.4.8]: the functor EX b p´q is left adjoint to the forgetful
functor. The result then follows by Proposition 4.9. �

6. Algebras and operations

In this section, we will discuss how the previous results can be applied in cat-
egories of O-algebras for O an operad. In particular, we will exploit the Dunn
additivity theorem in the form for 8-categories proved in [Lur17, Theorem 5.1.2.2],
which implies that

AlgEn`m
pCq “ AlgEn

pAlgEm
pCqq.

Reminder 6.1. The Boardman–Vogt tensor product of operads [BV73] has a version
for 8-operads. Given two 8-operads P and Q, there is a tensor product P b Q

[Lur17, Proposition 2.2.5.6], whose defining property is that PbQ-algebras are the
same as P-algebras in the category of Q-algebras:

AlgPpAlgQpCqq » AlgPbQpCq

In the following we will be considering the case where P is an E1-operad.

Proposition 6.2. Suppose that O is a coherent 8-operad, C is a presentable E1bO-
monoidal 8-category, B is an E1 b O-algebra in C, A Ñ B is a map of E0 b O-
algebras in C, and that EA is an enveloping E1 b O-algebra for A. Given R any
O-algebra in LModB, the induced natural diagram

B bAbR B bR

B bR B bEA R

mb1

1bm m

m

is a homotopy pushout diagram in the category of O-algebras in LModB.
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Proof. Let C and M be the category AlgOpCq, which is monoidal [Lur17, Example
3.2.4.4] and has centralizers [Lur17, Theorem 5.3.1.14]. In this category, A is an
E0-algebra, EA is an enveloping E1-algebra for A, and R is a left EA-module. The
hypotheses of Theorem 5.4 apply, and we get a homotopy pushout diagram

EAbAbR EAbR

EAbR R

mb1

1bm m

m

of O-algebras in LModEA.
The forgetful functor AlgOpLModBq Ñ AlgOpLModEAq preserves and detects

homotopy limits because the composite forgetful functors to C do, so the left adjoint
B bEA p´q preserves homotopy colimits. Applying this to the above homotopy
pushout diagram gives the desired result. �

Specializing to the case of an Ek-operad, the Dunn additivity theorem implies
the following.

Theorem 6.3. Suppose that C is a presentable Ek`1-monoidal 8-category, that B
is an Ek`1-algebra in C, A Ñ B is a map of Ek-algebras in C, and that EA is an
enveloping Ek`1-algebra for A. Given R any Ek-algebra in LModB, the induced
natural diagram

B bAbR B bR

B bR B bEA R

mb1

1bm m

m

is a homotopy pushout diagram in the category of Ek-algebras in LModR.

Remark 6.4. When R “ 1 is the monoidal unit and C is symmetric monoidal
presentable, this result is an immediate consequence of [Lur17, Proposition 5.2.2.12,
Corollary 5.3.1.16].

7. Special cases

7.1. Associative algebras. Our first examples are when k “ 0.

Proposition 7.1. Suppose that C is stable presentable symmetric monoidal, and
let TY be the free associative algebra on Y . Then for any left TY -module M , there
is a cofiber sequence

TY b Y bM Ñ TY bM ÑM

of left TY -modules.

For V a flat module over a commutative ring k and N a left module over the
tensor algebra TpV q whose underlying k-module is flat, this generalizes the standard
Koszul resolution

0 Ñ TpV q bk V bk N Ñ TpV q bk N Ñ N Ñ 0.
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Proof. Let X be 1‘ Y , the free E0-algebra on Y , so that EX » TY . For any left
TY -module M , Theorem 6.3 implies that there is a homotopy pushout diagram

TY b p1‘ Y q bM TY bM

TY bM M

of left TY -modules. By observing that the upper-left decomposes into a sum pTY b
Mq ‘ pTY b Y bMq, with first factor mapping by an equivalence to both corners,
we find that we can re-express as the desired cofiber sequence. �

7.2. Commutative algebras. We note that when k “ 8, Theorem 6.3 recovers
a known description of homotopy pushouts of E8 rings.

Proposition 7.2. Suppose that C is symmetric monoidal presentable. For a di-
agram B Ð A Ñ R of E8-algebras in C, the homotopy pushout is equivalent to
B bA R.

Proof. When k “ 8, the enveloping algebra EA is always equivalent to A, E8-
algebras in left B-modules are the same as E8-algebras with a map from B, and
the coproduct is the tensor product. Therefore, this reduces us to observing that the
homotopy pushout of B Ð A Ñ R is always equivalent to the homotopy pushout
of B >RÐ B >A >RÑ B >R. �

7.3. Augmented cases. The most straightforward general situation, which elim-
inates worries about left module structures, is when B is the monoidal unit 1.

Corollary 7.3. Suppose that C is a presentable Ek`1-monoidal 8-category with
unit 1, ε : A Ñ 1 is an augmented Ek-algebra in C, and that EA is an enveloping
Ek`1-algebra for A. Given R any Ek-algebra in C, the induced natural diagram

AbR R

R 1bEA R

εb1

m

is a homotopy pushout diagram in the category of Ek-algebras in C.

When R is also the monoidal unit, this recovers the following description relating
“suspension” to bar constructions on enveloping algebras.

Corollary 7.4. Suppose that C is a presentable Ek`1-monoidal 8-category with
unit 1, ε : A Ñ 1 is an augmented Ek-algebra in C, and that EA is an enveloping
Ek`1-algebra for A. Then the diagram

A 1

1 1bEA 1

εb1

m

is a homotopy pushout diagram in the category of Ek-algebras in C.

Specializing again to the case where A is a free algebra, we get the following
result.
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Corollary 7.5. Suppose that W is augmented over the unit 1. Then there exists
an equivalence

FreeEk
phocolimp1ÐW Ñ 1qq » Barp1,FreeEk`1

pW q,1q.

Proof. The universal property of a free algebra identifies FreeEk`1
pW q with the

enveloping algebra EpFreeEk
pW qq. �

A result like this plays an important role in Basterra and Mandell’s determination
of homology for En-algebras via an iterated bar construction [BM11, Lemma 7.5],
and a generalization of this appears as [Lur17, Corollary 5.2.2.13].

Another situation of particular interest to us, due to its connection to cell at-
tachment, is when R is the monoidal unit 1 and the algebra A is a free algebra.

Proposition 7.6. Suppose that C is a presentable Ek`1 monoidal 8-category, that

B is an Ek`1-algebra in C, and that there is a diagram 1
ε
ÐÝ W Ñ B in C. Then

there is a homotopy pushout diagram

B b FreeEk
pW q B

B B bFreeEk`1
pW q 1

m

1bε̄

of Ek-algebras in LModB.

The following result can be interpreted as showing that, if B is central in R,
any elements in B that become trivial in R also have their Ek`1-operations become
trivial, even if those operations are not defined on R.

Proposition 7.7. Suppose that C is a presentable Ek`1-monoidal 8-category, W
is an object of C, R is an Ek-algebra in C, and that there is a map of Ek-algebras
B Ñ R that lifts to a map of Ek`1-algebras from B to the center ZpRq. If there is
a commutative diagram

W B

1 R,

f

ε

in C, then it extends to a commutative diagram

FreeEk`1
pW q B

1 R.

f̃

ε̃

Proof. Using the adjunction between C and Ek-algebras we can extend the original
square from W to FreeEk

pW q, and then using the adjunction between Ek-algebras
in C and in LModB , we get a commutative diagram

B b FreeEk
pW q B

B R

m

1bε̃
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of Ek-algebras in LModB ; the unit map B Ñ R therefore factors through the
homotopy pushout. By the previous proposition, this is a factorization

B Ñ B bFreeEk`1
pW q 1Ñ R,

which proves that the map FreeEk`1
pW q Ñ R factors through ε̃. �

7.4. Classifying spaces. A connection to the theory of classifying spaces appears
when C “M is the category of spaces, with Cartesian product.

Example 7.8. An E0-algebra in spaces is a pointed space, and for a well-pointed
space X the free E1-algebra on X is modeled by the free associative algebra: the
James construction JpXq.

Taking B “ R “ ˚, our main result then implies that there is a homotopy
pushout diagram

X ˚

˚ Barp˚, JpXq, ˚q

of spaces. In other words, there is an equivalence

ΣX » BpJpXqq

between the classifying space of the James construction and the suspension of X.
Moreover, this arises from a well-known homotopy pushout diagram

JpXq ˆX JpXq

JpXq ˚

of left modules over JpXq. This extends to a general description of Barp˚, JpXq,Mq
as a homotopy pushout for any space M with a left action of JpXq.

Example 7.9. In the category of spaces, the easiest examples of Ek-algebras are
k-fold loop spaces. Because any map of Ek-algebras ΩkY Ñ B must factor through
the subspace Bˆ of grouplike elements, the recognition principle for k-fold and
pk ` 1q-fold loop spaces [May72] implies that the enveloping algebra EpΩkY q is
Ωk`1ΣY (assuming Y is pk ´ 1q-connected).

In these cases, the pushout diagrams in question are not new: they are gotten
by applying Ωk to homotopy pushout diagrams of pk ´ 1q-connected spaces. Any
new utility is that these pushouts still hold in non-grouplike situations.

8. Applications

We now specialize to applications in stable homotopy theory.

8.1. E3 ring spectra.

Theorem 8.1. Fix a prime p, and consider the pair of E3-algebra maps FreeE3pS
0q Ñ

S, classifying 0 and p respectively. Then the relative smash product is equivalent to
the Eilenberg–Mac Lane spectrum HFp:

HFp » S ^
FreeE3 pS

0q
S
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Proof. A theorem of Mahowald at p “ 2, and of Hopkins at odd primes, is that
the Eilenberg–Mac Lane spectrum HFp is the Thom spectrum of a stable (p-local)
spherical fibration over Ω2S3. This gives an alternative description of HFp as the
universal example S{{E2

p of an E2-algebra over S with a nullhomotopy of the element
p P π0pSq. This makes it the homotopy pushout of a diagram

FreeE2pS
0q S

S HFp

p

0

of E2-algebras, and hence a relative tensor over the free E3-algebra by Corollary 7.4.
�

Reminder 8.2. For the purposes of this paper, a tower of spectra is a functor from
the poset Nop to spectra,

¨ ¨ ¨ Ñ X2 Ñ X1 Ñ X0

whose underlying object is X0 and whose associated graded is the graded spectrum
tXn{Xn`1unPN. We will write FkX for the tower

¨ ¨ ¨ Ñ ˚ Ñ X Ñ ¨ ¨ ¨ Ñ X

which is free on X in filtration k; there is a natural map FkX Ñ Fk`1X.
The monoidal structure on N gives towers a symmetric monoidal 8-category

structure under the Day convolution, where

pX‚ ^ Y‚qn “ hocolimp`qěnXp ^ Yq,

and F0S
0 is the monoidal unit S. A filtered Ek-algebra is an Ek-algebra in the

category of towers of spectra. Both the underlying and associated graded functors
are strong symmetric monoidal, and so preserve Ek-algebras and (relative) smash
products.

Theorem 8.3. For any prime p, there exists a filtered E2-algebra R whose under-
lying spectrum is S and whose associated graded is HFp ^ FreeE3

pS0q, with S0 in
filtration 1 representing the image of p.

Proof. We will write PE3pxnq for the free filtered E3-algebra FreeE3pFnS
0q on a gen-

erator xn in filtration n, and PE3
gr pynq for the free graded E3-algebra on a generator

yn in grading n.
There is a diagram of filtered E3-algebras

SÐ PE3px0q Ñ PE3py1q,

where the left-hand map sends x0 to p P π0S and the right-hand map sends x0 to
the image of y1 in filtration zero. We define R to be the (derived) smash product

R “ S ^
PE3 px0q

PE3py1q

in the category of towers. Because it is a relative smash product of filtered E3-
algebras, it has the structure of a filtered E2-algebra.

The map PE3px0q Ñ PE3py1q is an equivalence on underlying spectra, and so the
underlying E2-algebra of R is the sphere spectrum S.

On associated graded, this becomes a diagram of graded E3-algebras

SÐ PE3
gr px̄0q Ñ PE3

gr pȳ1q.
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The left-hand map still sends x̄0 to the element p. The right-hand map now sends
x̄0 to 0 because y1, being of filtration 1, now has trivial image in degree zero of the
associated graded. Therefore, there is a factorization

PE3
gr px̄0q Ñ SÑ PE3

gr pȳ1q,

and the associated graded has an equivalence

grpRq » S ^
PE3
grpx̄0q

PE3
gr pȳ1q » pS ^

PE3
grpx̄0q

Sq ^
S
PE3
gr pȳ1q.

Theorem 8.1 shows that this algebra S ^
PE3
grpx0q

S is the algebra HFp concentrated in

grading zero, and so this becomes

grpRq » HFp ^ FreeE3py1q

as graded E2-algebras. �

Corollary 8.4. The filtered spectrum of Theorem 8.3 gives rise to a spectral se-
quence of graded-commutative algebras, whose abutment is π˚S^p .

For p “ 2, the E1-term is
F2rhi,js,

where hi,j are defined for i ě 1, j ě 0, with total degree and filtration given by the
bidegree p2i`j ´ 2j ´ 1, 2i`j´1q. For p odd, the E1-term is

Fprvis b Λrhi,js b Fprbi,js,

where the bidegree of vi is p2pi ´ 2, piq for i ě 0, of hi,j is p2pi`j ´ 2pj ´ 1, pi`jq
for i ě 1, j ě 0, and of bi,j is p2pi`j`1 ´ 2pj`1 ´ 2, pi`j`1q for i ě 1, j ě 0.

Proof. The coefficient ring of the associated graded is the homology of a free E3-
algebra on the pointed space S1, with generator y1 in bidegree p1, 0q. This is
completely determined in [CLM76, Theorem III.3.1] in terms of the Dyer–Lashof
operations. At p “ 2, the Dyer–Lashof operation Qi sends an element in bidegree
pr, sq to bidegree p2r ` i, 2sq, while at odd primes the operations Qi and βQi send
such an element to bidegree ppr`2ipp´1q, psq and ppr`2ipp´1q´1, psq respectively.
(Here we take the convention that lower-indexed Dyer–Lashof operations satisfy
Qjx “ Q|x|{2`j at odd primes).

At p “ 2, if we define hi,j “ Q
pjq
1 Q

pi´1q
2 y1, then

π˚grpRq – F2rhi,j | i ě 1, j ě 0s.

The element hi,j is in bidegree p2i`j ´ 2j ´ 1, 2i`j´1q, which can be shown by
induction.

At odd primes, if we define

vi “ Q
piq
1 y1

hi,j “ Q
pjq
1{2βQ

piq
1 y1

bi,j “ βQ
pj`1q
1{2 βQ

piq
1 y1

then

π˚grpRq – Fprvi | i ě 0s b Λrhi,j | i ě 1, j ě 0s b Fprbi,j | i ě 1, j ě 0s.

Here the bidegree of vi is p2pi ´ 2, piq, of hi,j is p2pi`j ´ 2pj ´ 1, pi`jq, and of bi,j
is p2pi`j`1 ´ 2pj`1 ´ 2, pi`j`1q.
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These associated graded coefficient rings are then the E1-terms of the associated
spectral sequence. �

Remark 8.5. While the underlying graded rings are abstractly isomorphic to the
E1-term of the May spectral sequence, the filtration and the differentials are quite
different.

For example, in the 2-primary May spectral sequence, the element ν P π3S is de-
tected by h1,2 and the element σ P π7S is detected by h1,3. In the spectral sequence
of Corollary 8.4, neither h1,2 nor h1,3 are permanent cycles; ν is instead detected
by the corrected element h1,2 ` h1,1h2,0, while σ is detected by h1,1h3,0 ` h2,1h2,0,
in strictly lower filtration than h1,3. As a possible point of view, the Hopf invariant
classes in the classical Adams spectral sequence arise from algebraic power opera-
tions that require geometric correction terms before they are genuinely represented
by stable homotopy elements. In this new spectral sequence, the correction terms
have lower filtration than the power operations themselves, and so are detected
first.

Remark 8.6. There is an alternative approach to the construction of this filtered
object R using Goodwillie calculus, which will appear in forthcoming joint work of
the second author with Eldred.

8.2. Dual Steenrod quotients. The following is a specialization of Proposi-
tion 7.6.

Proposition 8.7. Suppose that B Ñ C is a map of commutative ring spectra and
α P π˚pCq is an element. Then the quotient, in the category of Ek algebras in
LModC , has an equivalence:

C {{
Ek

α » C ^
FreeBEk`1

pSnq
B.

Corollary 8.8. Suppose that C is an E8 B-algebra and R is an Ek C-algebra. If
α P π˚C maps to zero in R, then all of the B-algebra Ek`1 Dyer-Lashof operations
on α go to zero in R.

This allows us to prove the following odd-primary analogue of [BHL+21, Theo-
rem 1.2].

Theorem 8.9. Let p be an odd prime and A “ HFp^HFp be the commutative ring
spectrum whose coefficient ring is the dual Steenrod algebra. Then the associative
quotient A{{τn has coefficient ring

A˚{pξn`1, ξn`2, . . . , τn, τn`1, . . . q

and A{{τ̄n has coefficient ring

A˚{pξ̄n`1, ξ̄n`2, . . . , τ̄n, τ̄n`1, . . . q.

Remark 8.10. The subring

Fprξ1, . . . , ξns b Λrτ0, . . . , τn´1s Ă A˚

maps isomorphically onto both quotients.

Proof. The conjugation operation is realized by an automorphism of A as a com-
mutative ring spectrum, so it suffices to prove the case of τ̄n.
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Consider the left unit map HFp Ñ A “ HFp^HFp of commutative ring spectra.
Then Proposition 8.7 (with k “ 1) shows that there is a formula for the free E1-
quotient:

A{{α » A ^
Free

HFp
E2

pSnq

HFp.

In particular, there is a Künneth spectral sequence

Tor
H˚ FreeE2 pS

n
q

˚˚ pA˚,Fpq ñ π˚pA{{αq.

By [CLM76, Theorem III.3.1], for odd p and n there is an isomorphism

H˚ FreeE2
pSnq – Λrα,Q1{2pαq, Q

p2q
1{2pαq, . . . s b FprβQ1{2pαq, βQ

p2q
1{2pαq, . . . s.

(As in Corollary 8.4, we take the convention that lower-indexed Dyer–Lashof oper-
ations satisfy Qjx “ Q|x|{2`j at odd primes).

Suppose α “ τ̄n`1. Using the Dyer–Lashof operations from the left unit, Q1{2τ̄n “

τ̄n`1 and βQ1{2τ̄n “ ξ̄n`1 by [BMMS86, Theorem III.2.3]. Therefore, the E2-term
of the Künneth spectral sequence can be rewritten as

Tor
Λrτ̄n,τ̄n`1,... sbFprξ̄n`1,ξ̄n`2,... s
˚˚ pΛrτ̄0, τ̄1, . . . s b Fprξ̄1, ξ̄2, . . . s,Fpq.

However, the first Tor-factor is flat over the base ring. As a result, the Künneth
spectral sequence degenerates down to an isomorphism

π˚pA{{τ̄nq – A˚{pτ̄n, τ̄n`1, . . . , ξ̄n`1, ξ̄n`2 . . . q,

as desired. �
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