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Abstract

Previous work constructed a generalized truncated Brown-Peterson
spectrum of chromatic height 2 at the prime 2 as an E∞-ring spectrum,
based on the study of elliptic curves with level-3 structure. We show
that the natural map forgetting this level structure induces an E∞-ring
map from the spectrum of topological modular forms to this trun-
cated Brown-Peterson spectrum, and that this orientation fits into a
diagram of E∞-ring spectra lifting a classical diagram of modules over
the mod-2 Steenrod algebra. In an appendix we document how to
organize Morava’s forms of K-theory into a sheaf of E∞-ring spectra.

1 Introduction

Some of the main applications of modern algebraic topology, including the
development of structured ring spectra [EKMM97, HSS00], have been to
the subject of algebraic K-theory. These new foundations introduce strictly
associative and commutative ring objects in the category of spectra, together
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with their categories of modules. These provide a large library of new objects
whose algebraic K-theory can be calculated and studied. These illuminate
general phenomena that bear on old calculations of the algebraic K-theory
of rings, of simplicial rings, and of spaces.

Based on computational studies in algebraic K-theory, Ausoni and Rognes
[AR02, Introduction] now expect the existence of a redshift phenomenon
(generalizing the Bott-periodic phenomena appearing in the algebraic K-
theory of fields) and initiated a long-term program to study the relationship
between algebraic K-theory and the chromatic filtration. These conjectures
have been supported by their work showing that the algebraic K-theory of
complex K-theory supports information at chromatic level 2.

The next computational steps in such a research program would involve study
of the algebraic K-theory of objects at chromatic level 2. Ongoing work of
Bruner and Rognes aims to compute the algebraic K-theory of the topolog-
ical modular forms spectrum K∗(tmf(2)) [BR] and of related spectra such as
BP〈2〉. These computations take place using the machinery of topological
cyclic homology.

This computational work is greatly assisted by the use of higher multiplicative
structures. For an associative object R, the algebraic K-theory K(R) and
topological cyclic homology TC(R) are spectra connected by a cyclotomic
trace K(R) → TC(R). However, if the category of R-modules has a sym-
metric monoidal structure analogous to the tensor product of modules over
a commutative ring, the algebraic K-theory and topological cyclic homology
inherit the structure of ring objects themselves [EM06]. Computations in
topological cyclic homology involve numerous spectral sequence calculations,
and these are greatly assisted by the existence of ring structures (or the data
of power operations [BR05]) and by naturality arguments.

In addition, many of these computations begin with the Bökstedt spectral
sequence, which requires information about the mod-p homology of the spec-
trum in question.

Previous work, based on a study of the moduli of elliptic curves with level
Γ1(3)-structures, showed the following result.

Theorem 1.1 ([LN12, Theorem 1.1]). There exists a 2-local complex oriented
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E∞-ring spectrum tmf1(3)(2) such that the composite map of graded rings

Z(2)[v1, v2] ⊂ BP∗ →MU(2),∗ → tmf1(3)(2),∗

is an isomorphism.

(Here we say that a multiplicative cohomology theory is “complex oriented”
if it is given compatible choices of orientation for all complex vector bundles;
we employ the fact that this is equivalent to the choice of a map of ring
spectra MU → R.)

However, this result was obtained by means of obstruction theory, and only
used the modular interpretation of tmf1(3)(2) in a superficial way. The goal
of the current paper is to gain a better understanding of the larger context in-
habited by the spectrum tmf1(3)(2); this is closely related to the study made
by Mahowald and Rezk in [MR09]. With the above K-theoretic applica-
tions in mind, another goal is to exhibit the mod-2 cohomology of tmf1(3)(2).
(Forthcoming work of Hill and the first author should recover a C2-action
and a connective spectrum tmf0(3).)

There is a map of moduli stacks of generalized elliptic curves

M1(3)→M

([Con07, Theorem 4.1.1, (1) with N = 3, n = 1]). This is the unique map
extending the map that takes a smooth elliptic curve with a 3-torsion point
and forgets the point. This map ramified at exactly one of the two cusps
of M1(3) but is log-étale. The modular interpretation of tmf suggests that
this map should have a topological realization. In fact, we would like to
construct a 2-local commutative diagram of E∞-ring spectra corresponding
to (the connective covers of) the global sections of sheaves of E∞-ring spectra
in the following diagram:

M [Spec(Z(2))//{±1}]cuspoo

M1(3)

OO

Spec(Z(2))
ramified cuspoo

OO

A realization of this diagram is achieved by the following main result of this
note.
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To state it, we recall that, for each n, the mod-2 Steenrod algebraA∗ contains
exterior subalgebras E(n) generated by the Milnor primitivesQ0, . . . , Qn, and
larger subalgebras A(n) generated by Sq1, . . . , Sq2n+1

.

Theorem 1.2. There is a commutative diagram of connective E∞-ring spec-
tra as follows:

tmf(2)
c //

o

��

ko(2)

ι

��
tmf1(3)(2)

c̃ // ku(2)

(1.1)

Here ι is the complexification map, o is a tmf(2)-orientation of tmf1(3), c
corresponds to the cusp on the moduli space of elliptic curves, and c̃ corre-
sponds to the unique ramified cusp on the moduli space of elliptic curves with
level Γ1(3)-structure.

In mod-2 cohomology, this induces the following canonical diagram of modules
over the mod-2 Steenrod algebra A∗:

A∗//A(2) A∗//A(1)oo

A∗//E(2)

OO

A∗//E(1).oo

OO

There exists a complex orientation of tmf1(3)(2) such that in homotopy, c̃
induces a map sending the Hazewinkel generators v1 to v1 and v2 to zero,
and there is a cofiber sequence of tmf1(3)(2)-modules

Σ6tmf1(3)(2)
·v2−→ tmf1(3)(2)

c̃−→ ku(2).

We note that the restriction to the ramified cusp ofM1(3) is not material in
the above discussion. The unramified cusp also gives rise to a commutative
diagram of the same form and with similar properties. However, the spectrum
in the lower-right corner is no longer the connective K-theory spectrum ku(2)

if multiplicative structure is taken into account, but instead corresponds to
a Galois twist of the multiplicative formal group law which is defined over
Z[1/3]. We discuss the modifications necessary to use this form of K-theory
in an appendix. Its periodic version is most easily described as a homotopy
fixed point spectrum:

KU τ = (KU ∧S(2)[ω])hC2
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Here S(2)[ω] is obtained by adjoining third roots of unity to the 2-local sphere
spectrum. The generator of the cyclic group C2 acts by ψ−1 ∧ σ, where ψ−1

is the Adams operation associated to complex conjugation and σ is complex
conjugation acting on the roots of unity.

We conclude with a short overview of the content. In Section 2 we collect
basic facts about the moduli of generalized elliptic curves equipped with a
Γ1(3)-structure. In Section 3 we construct the E∞-maps in Theorem 1.2 using
Goerss-Hopkins obstruction theory and chromatic fracture squares. While
familiar to the experts, we found it worthwhile to spell out the details of
the K(1)-local obstruction theory. Section 4 shows H∗(tmf1(3)(2),F2) ∼=
A∗//E(2) by showing more generally that every generalized BP〈n〉 has the
same cohomology as the standard BP〈n〉 (Definition 4.1 and Theorem 4.3).
Section 5 collects these results into a proof of Theorem 1.2. The appendix dis-
cusses forms of K-theory and the changes necessary to realize diagram (1.1)
using the unramified cusp rather than the ramified one.

Convention 1.3. With the exception of the appendix, throughout this paper
we will work in the category of 2-local spectra. In particular, the names tmf,
tmf1(3), ko, ku, and the like denote 2-localizations.

The authors would like to thank several people: Gerd Laures for help with the
proof of Proposition 3.2; Matthew Ando and Paul Goerss for discussion relat-
ing to the tmf-orientations of KO and KO [[q]]; Andrew Baker for discussions
relating to uniqueness of BP〈n〉; Andrew Baker and Justin Noel for indicat-
ing a generalization, and simplification, of the argument for Theorem 4.3;
John Rognes and Robert Bruner for motivation and discussions relating to
the material of this paper; and referee for several helpful suggestions.

2 The 2-localized moduli M1(3)(2)

This section collects basic facts about the moduli of generalized elliptic curves
with a Γ1(3)-structure. It provides background for the somewhat ad-hoc con-
struction of [LN12, Section 8.2], where it was shown that a certain formal
group law over Z(2)[A,B], to be recalled presently, defines a BP〈2〉-realization
problem at the prime 2 which can be solved. We will focus here on determin-
ing the ordinary and supersingular loci of the moduli stack, as those dictate
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the chromatic properties of tmf1(3).

Consider the curve E ⊆ P2
Z(2)[A,B] defined by the affine Weierstrass equation

y2 + Axy +By = x3 (2.1)

over the graded ring Z(2)[A,B], where |A| = 1, |B| = 3. There is a 3-torsion
point at the origin (0, 0), and conversely this Weierstrass form is forced by the
requirements that (0, 0) is a 3-torsion point whose tangent line is horizontal;
the elliptic curve E is the universal generalized elliptic curve with a choice of
3-torsion point (namely [0 : 0 : 1]) and a choice of invariant differential dy/3x2

by [MR09, Proposition 3.2]. The grading, which can be interpreted as acting
on the invariant differential, is reflected in the action of the multiplicative
group Gm = Spec(Z[λ±1]) determined by

A 7→ λA,B 7→ λ3B.

This lifts to a Gm-action on E/Spec(Z(2)[A,B]) via

(x, y) 7→ (λ2x, λ3y).

The curve E has additive reduction only at (A,B) = (0, 0).

Proposition 2.1. The restriction of E to A2
Z(2)
\ {(0, 0)} is a generalized

elliptic curve with irreducible geometric fibers as follows:

i) A nodal curve of arithmetic genus one if A3 = 27B or B = 0.

ii) A supersingular elliptic curve if A = 0 and 2 = 0.

iii) An ordinary elliptic curve otherwise.

This, in particular, expresses A as a lift of the Hasse invariant v1, which is
well-defined mod 2; the element B is a lift of v2, which is well-defined mod
(2, v1).

Proof. To say that E/(A2
Z(2)
\ {(0, 0)}) is a generalized elliptic curve with

irreducible fibers in the sense of [DR73, Chapitre I, Définition 1.12] means
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that the modular quantities c4(E) and ∆(E) have no common zero on A2
Z(2)
\

{(0, 0)}. This results from the following computations:

c4(E) = A(A3 − 24B)

∆(E) = B3(A3 − 27B)

j(E [∆−1]) =
A3(A3 − 24B)3

B3(A3 − 27B)

A geometric fiber is a nodal curve if and only if ∆ = 0, so i) is clear and ii) and
iii) follow by recalling that the only supersingular j-invariant in characteristic
2 is j = 0.

The Gm-action on E over A2
Z(2)
\ {(0, 0)} descends to determine a generalized

elliptic curve over the quotient stack

M1(3)(2)
∼=
[
(A2

Z(2)
\ {(0, 0)}) // Gm

]
.

The stackM1(3)(2) is a stack with coarse moduli isomorphic to the weighted
projective space Proj(Z(2)[A,B]). Since the zero section of a generalized ellip-
tic curve lies in the smooth locus, we have associated with E a 1-dimensional
formal group Ê/M1(3)(2).

The function −x/y is a coordinate in a neighborhood of ∞ on E , and this
gives an isomorphism between the pullback of the relative cotangent bundle
ω of Ê/M1(3) along the zero section and the tautological line bundle O(1)

on M1(3). Compatibility with the grading implies that the formal group Ê
comes from a graded formal group law, and is induced by a map of graded
rings MU∗ → Z(2)[A,B]. Here we follow the standard convention that ele-
ments in algebraic grading k lie in topological grading 2k. The elements A
and B can then be interpreted as global sections:

A ∈ H0(M1(3),O(1))

B ∈ H0(M1(3),O(3))

Let Z(2)[A,B]→ Z(2)[b] be the ungraded map given by A 7→ 1, B 7→ b. The
composite map

Spec(Z(2)[b])→ A2
Z(2)
\ {(0, 0)} →M1(3)
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is an open immersion and thus determines an affine coordinate chart V of
M1(3). On this chart the elliptic curve y2+xy+by = x3 has no supersingular
fibers by Proposition 2.1, ii).

Proposition 2.2. The restriction of Ê to V = Spec(Z(2)[b]) is a formal
2-divisible group whose mod-2 reduction has constant height 1.

Proof. By Proposition 2.1 the restriction Ê |V is a 1-dimensional formal group
of constant height 1, so it is 2-divisible.

Observe that V ⊆ M1(3) is the maximal open substack over which E is
ordinary.

Let Z(2)[A,B]→ Z(2)[a] be the map given by A 7→ a, B 7→ 1. The composite
map

Spec(Z(2)[a])→ A2
Z(2)
\ {(0, 0)} →M1(3)

is étale. The stack-theoretic image is the quotient of Spec(Z(2)[a]) by the
action of the group µ3 of third roots of unity, given by ω · a = ωa for ω any
third root of unity. The induced map

W =
[
Spec(Z(2)[a])//µ3

]
→M1(3)

is an open immersion, and so Spec(Z(2)[a]) determines an étale coordinate
chart for the stack near a = 0. On this chart the elliptic curve is defined
by the Weierstrass equation y2 + axy + y = x3, with µ3-action given by
ω · (x, y) = (ω2x, y).

Let U be the formal scheme Spf(Z2 [[a]]), with formally étale map U →M1(3).
By Proposition 2.1, the pullback of E to U has special fiber a supersingular
elliptic curve. We denote by G/U the 2-divisible group of E|U .

Proposition 2.3. The 2-divisible group G/U has height 2 and is a universal
deformation of its special fiber.

Proof. This is a restatement of [LN12, Proposition 8.2 and Remark 4.2].

The common overlap of the coordinate charts V and W is determined by
the identity a3b = 1. The Mayer-Vietoris sequence for this weighted pro-
jective space, using these affine coordinate charts, allows us to compute the
cohomology of M1(3)(2) with coefficients in O(∗).
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Corollary 2.4. The cohomology ofM1(3) with coefficients in O(∗) vanishes
above degree 1.

The cohomology groups H0(M1(3),O(∗)) form the graded ring Z(2)[A,B].

The cohomology H1(M1(3),O(∗)) is the module Z(2)[A,B]/(A∞, B∞) of el-
ements A−nB−mD, where D is a duality class in H1(M1(3),O(−4)) annihi-
lated by A and B.

3 Constructing the maps

The goal of this section is to construct the E∞-maps of Theorem 1.2, dia-
gram (1.1), which we reproduce here:

tmf c //

o
��

ko

ι

��
tmf1(3) c̃ // ku

All spectra appearing in this diagram are the connective covers of theirK(0)∨
K(1) ∨ K(2)-localizations. Accordingly, we will construct the required E∞-
maps using two chromatic fracture squares, followed by taking connective
covers.

3.1 The K(2)-local maps

We identify the K(2)-localizations of the connective spectra in Theorem 1.2
as follows. We have that LK(2)KU ' ∗, and as K(n)-localization does not
distinguish between a spectrum and its connective cover we have LK(2)ku ' ∗
as well. From the familiar fibration

Σko
η→ ko→ ku, (3.1)

it follows that the nilpotent map η induces an equivalence on LK(2)ko, hence
LK(2)ko ∼= ∗ as well.
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Let E denote the Lubin-Tate spectrum associated with the formal group of
the supersingular elliptic curve

C : y2 + y = x3

over F4 [GH04, Section 7]. The group G48 = Aut(C/F4) o Gal(F4/F2) acts
on E and LK(2)tmf ' EhG48 [HM]. The subgroup 〈ω〉 ⊆ Aut(C/F4) fixing
the point at infinity on C (whose generator sends (x, y) to (ω2x, y)) is cyclic
of order 3 and defines a subgroup

S3
∼= 〈ω〉oGal(F4/F2) ⊆ G48. (3.2)

We have LK(2)tmf1(3) ' EhS3 by the construction of tmf1(3) [LN12, proof
of Theorem 4.4].

We define the K(2)-localizations of the maps from diagram (1.1) as follows:

EhG48 //

oK(2)

��

∗

��
EhS3 // ∗

The map oK(2) is defined to be the canonical map of homotopy fixed point
spectra associated with the inclusion of equation (3.2).

3.2 The K(1)-local maps

We refer the reader to [Lau04, Hop, AHS04], as well as [LN12, Sections 5
and 6] and references therein, for an account of basic results about K(1)-local
E∞-ring spectra which we will use freely.

To ease reading, in this subsection only we will abbreviate

TMF = LK(1)tmf,

TMF1(3) = LK(1)tmf1(3),

KO = LK(1)ko, and

K = LK(1)ku.

(3.3)

Furthermore, all smash products will implicitly be K(1)-localized and all
abelian groups implicitly 2-completed. We use K∨∗ (−) to denote (K(1)-
localized) K-homology, so that

K∨∗ (−) = π∗LK(1)(K ∧ −).
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In order to construct the required maps between the E∞-ring spectra in equa-
tion (3.3), we first construct maps between the ψ-θ-algebras given by their
K∨-homology.

Proposition 3.1. All spectra in equation (3.3) have K∨∗ concentrated in even
degrees, and there are isomorphisms of ψ-θ-algebras as follows.

K∨0 (TMF) ∼= V (3.4)

K∨0 (KO) ∼= Homc(Z×2 /{±1}, K0) (3.5)

K∨0 (K) ∼= Homc(Z×2 , K0) (3.6)

Here V is (the level 1-analogue of) Katz’s ring of generalized modular func-
tions [Kat75, (1.4.9.1)], where it is denoted V∞,∞.

These fit into a commutative diagram of ψ-θ-algebras as follows:

K∨0 (TMF) ∼= V
a //

d
��

Homc(Z×2 /{±1}, K0) ∼= K∨0 (KO)

b
��

K∨0 (TMF1(3)) c // Homc(Z×2 , K0) ∼= K∨0 (K)

(3.7)

Proof. First, we review the structure of these ψ-θ-algebras. According to
[Hop, Lemma 1] and [Lau03, Proposition 3.4], or [AHR, Proposition 9.2], we
have isomorphisms of ψ-θ-algebras as follows:

K∨∗K
∼= Homc(Z×2 , K∗) (3.8)

K∨∗KO
∼= Homc(Z×2 /{±1}, K∗) (3.9)

KO∨∗KO
∼= Homc(Z×2 /{±1}, KO∗) (3.10)

Here we have obvious Z×2 -actions and trivial θ, in the sense that the ring
homomorphism ψ2 is the identity.

Furthermore, the inclusion of the constant functions K∗ ⊆ K∨∗K (resp. K∗ ⊆
K∨∗KO), as the ring of Z×2 -invariants, is a split Z×2 - (resp. Z×2 /{±1}-) Galois
extension.

Next, we consider K∨0 (TMF1(3)). We have a generalized elliptic curve

E : y2 + xy + by = x3 (3.11)
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over Z2[b]∧2 . By construction [LN12, Section 6.2], the Hurewicz map

π0TMF1(3)→ K∨0 TMF1(3)

has domain Z2[b]∧2 , and is the Z×2 -Galois extension classifying isomorphisms

Ĝm → Ê. We will refer to such an isomorphism as a trivialization of the
ordinary elliptic curve E/π0(TMF1(3)). The operation θ : K∨0 (TMF1(3))→
K∨0 (TMF1(3)) is determined by the canonical subgroup of E [Gou88, page
35] and can be computed explicitly [LN12, proof of Proposition 8.5]. Still by
construction, we also have K∨1 TMF1(3) = 0.

The ψ-θ-algebra structure on V is determined similarly. The ring V car-
ries a universal isomorphism class of trivialization of its elliptic curve. It
has a continuous action of Z×2 (acting on the universal trivialization) and a
canonical lift of Frobenius ψ2, which induces the natural transformation on
V determined by the quotient by the canonical subgroup. Since V is torsion
free, there is a unique self-map θ of V such that ψ2(x) = x2 + 2θ(x) for all
x ∈ V . This gives the structure of a ψ-θ-algebra to V .

We will now establish the isomorphism of equation (3.4). From [Lau04,
Theorem 3 and Proposition 1], we know KO∨∗TMF ∼= KO∗⊗KO∨0 TMF and
V ' KO∨0 TMF as ψ-θ-algebras.

Since TMF is equivalent to a (K(1)-local) wedge of copies of KO [Lau04,
Corollary 3], we find that

K∨∗ TMF ∼= ⊕̂K∨∗KO. (3.12)

Therefore, by equation (3.9) we find that K∨∗ TMF is concentrated in even de-
grees. Moreover, by equation (3.10) we have that the map V ∼= KO∨0 TMF→
K∨0 TMF is an isomorphism.

We next construct maps between these ψ-θ-algebras as required in dia-
gram (3.7).

Construction of the map b. The map b is determined by equations (3.8),
(3.9), and pull-back along the canonical projection Z×2 → Z×2 /{±1},
and is clearly a map of ψ-θ-algebras.

Construction of the map d. By construction there is a trivialization of the
elliptic curve E over K∨0 TMF1(3). As V carries the universal exam-
ple of a trivialized elliptic curve over a 2-adically complete ring, this
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determines a map d : V = K∨0 TMF → K∨0 TMF1(3). A Γ1(3) struc-
ture on an elliptic curve E determines a unique compatible structure
on the quotient by the canonical subgroup, as 2 and 3 are relatively
prime. This implies that the induced map of classifying rings is a map
of ψ-θ-algebras.

Construction of the map a. The map a is constructed in the same manner
as d: the ring K∨0 KO carries the Tate curve y2 + xy = x3 as univer-
sal among isomorphism classes of nodal elliptic curve equipped with a
choice of trivialization, and the map a : V → K∨0 KO classifies it.

Construction of the map c. The map

π0TMF1(3) ∼= Z2[b]∧2 → K∨0
∼= Z2,

determined by sending b 7→ 0 specializes the elliptic curve E of equa-
tion (3.11) over π0TMF1(3) to the Tate curve T : y2 + xy = x3. We

fix an isomorphism of formal groups T̂ ∼= Ĝm, so that the pullback of
the elliptic curve E under the composite map π0TMF1(3)→ K∨0 K has
a trivialization. By the universal property of K∨0 TMF1(3), this trivi-
alization determines a map c : K∨0 TMF1(3) → K∨0 K, and we need to
show that it commutes with ψα (α ∈ Z×2 ) and ψ2.

Let (E, f : Ê
∼=→ Ĝm) be the universal trivialization of E overK∨0 (TMF1(3)).

Then
(ψα)∗(E, f) = (E, [α] ◦ f)

for any α ∈ Z×2 = Aut(Ĝm). Hence

(c ◦ ψα)∗(E, f) = (T, c∗([α]) ◦ c∗(f)) = (T, [α] ◦ c∗(f)).

On the other hand,

(ψα ◦ c)∗(E, f) = ψα∗ (T, c∗(f)) = (T, [α] ◦ c∗(f)),

so ψα ◦ c = c ◦ ψα, making c compatible with the Z×2 -action.

Recall [Gou88, page 35] the canonical subgroup C ⊆ E is defined so
that there is the following diagram of formal groups over K∨0 (TMF1(3))
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with exact columns:

C
∼= //� _

��

µ2� _

��

Ê

��

f

∼=
// Ĝm

[2]
��

Ê/C
f̄

∼=
// Ĝm

(3.13)

From this, we find that c∗(f̄) = c∗(f). By construction of ψ2, we have

(ψ2)∗(E, f) = (E/C, f̄),

By the functoriality of the canonical subgroup and (3.13), we therefore
find that

(c ◦ ψ2)∗(E, f) = (c∗(E/C), c∗(f̄)) = (T/C, c∗(f)),

On the other hand,

(ψ2 ◦ c)∗(E, f) = ψ2
∗(T, c∗(f)) = (T/C, c∗(f)).

Hence ψ2 ◦ c = c ◦ ψ2, and c is indeed a map of ψ-θ-algebras.

To see that diagram (3.7) commutes, it suffices to remark that both compos-
ites b ◦ a and c ◦ d classify the same trivialized generalized elliptic curve over
K∨0 K, and this is true by construction.

We now start to realize diagram (3.7) as the K∨-homology of a commutative
diagram of K(1)-local E∞-ring spectra. The authors have not been able to
locate a complete proof in the literature for the following result, though it
is known to the experts and a proof sketch can be found in [DM10, Remark
2.2].

Proposition 3.2. There is an E∞-map cK(1) : TMF→ KO such that K∨0 (cK(1)) =
a as in diagram (3.7).
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Proof. We remind the reader of the presentation of KO and TMF as fi-
nite cell LK(1)S-algebras. We will write PX for the free K(1)-local E∞-ring
spectrum on a K(1)-local spectrum X.

There is a generator ζ ∈ π−1(LK(1)S
0), and we define Tζ to be S ∪ζ e0: the

pushout of the diagram

S 0←PS−1 ζ→ S
in the category of K(1)-local E∞-ring spectra. We refer to this as the E∞-cone
over ζ.

There are elements y and f in π0Tζ . We refer the reader to the discussion sur-
rounding [Lau04, Proposition 5] for the definitions of these elements, and to
[Lau04, end of appendix] for the existence of a factorization of the attaching
maps

y : PS0 θ(x)−h(x) // PS0 f // Tζ .

The spectrum KO is Tζ ∪f e1, the E∞-cone on f [Hop, Proposition 13], and
TMF ' Tζ ∪y e1 [Lau04, Convention on page 390] as E∞-ring spectra. There-
fore, there is an E∞-map cK(1) : TMF → KO factoring the given attaching
maps.

It remains to see that K∨0 (cK(1)) = a and to this end, we first consider the
effect of cK(1) in homotopy. Remembering that everything is implicitly 2-
completed, we know that

π0TMF = Z2[f ] = Z2[j−1] (3.14)

by [Lau04, Proposition 6 and Lemma 9].

By construction f maps to zero under cK(1), and this implies that j−1 also
maps to zero by the following computation.

The element j−1 is a 2-adically convergent power series in f :

j−1 =
∞∑
n=0

anf
n (3.15)

Clearly cK(1) sends j−1 to a0.

We now pass to q-expansions. It is classical that j−1(q) = q+O(q2). Since f
is of the form f = ψ(b)−b for a suitable 2-adic modular function b and ψ the
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Frobenius operator [Lau04, Equation (33)], we learn that the q-expansion

f(q) = ψ(b)(q)− b(q) = b(q2)− b(q)

has constant term 0. Hence, taking q-expansions of equation (3.15) and
setting q = 0 yields 0 = a0, as desired.

Finally, knowing that cK(1) sends j−1 to 0 implies thatK∨0 (cK(1)) = a, because
K∨0 (cK(1)) is the map induced on the Igusa towers ([LN12, Definition 5.6])
by the map π0(cK(1)).

All other maps of K(1)-local E∞-ring spectra we require will be constructed
by obstruction theory. (The reason the map cK(1) cannot be thus constructed
is that K∨0 (KO) is not an induced Z×2 -module (Equation 3.5), which is a
manifestation of the fact that KO is not complex orientable.)

We recall, for a graded ψ-θ-algebra B∗ over (K∧p )∗, ΩtB∗ is the kernel of the
map of augmented ψ-θ-algebras

B∗ ⊗(K∧p )∗ (K∧p )∗St → B∗.

Proposition 3.3. Let p be a prime and suppose X and Y are K(1)-local
E∞-ring spectra with the following properties.

i) K∨0 (X) and K∨0 (Y ) are p-adically complete and K∨1 (X) = K∨1 (Y ) = 0.

ii) The inclusion (K∨0 (X))Z
×
p ⊆ K∨0 (X) is the p-adic completion of an ind-

étale extension.

iii) The ring (K∨0 (X))Z
×
p is the p-adic completion of a smooth Zp-algebra.

iv) For all s > 0 we have Hs
c (Z×p , K∨∗ (Y )) = 0.

Then there is an isomorphism

f 7→ K∨0 (f) : π0E∞(X, Y )
∼=→ Homψ-θ(K

∨
0 X,K

∨
0 Y ),

given by the canonical map evaluating on K∨0 , from the set of connected
components of the derived E∞-mapping space to the set of ψ-θ-algebra maps.
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Proof. The first assumption implies that A∗ := K∨∗ (X) and B∗ := K∨∗ (Y )
are graded, p-adic, even-periodic ψ-θ-algebras. The remaining conditions are
exactly those of [LN12, Lemma 5.14], application of which implies that for
all s ≥ 2 or t ∈ Z odd we have vanishing of the ψ-θ-algebra cohomology
groups

Hs
ψ-θ(A∗/(K

∧
p )∗,Ω

tB∗).

The claim now follows from Goerss-Hopkins obstruction theory as in [LN12,
Theorem 5.13, 3].

We will make use of the following particular instances of this result.

Proposition 3.4. For each dotted arrow between K(1)-local E∞-ring spectra
X and Y in the diagram

TMF

�� %%vv

KO

��
LK(1)LK(2)tmf1(3) TMF1(3) // K,

there is an isomorphism

f 7→ K∨0 (f) : π0E∞(X, Y )
∼=→ Homψ-θ(K

∨
0 X,K

∨
0 Y )

given by evaluation on K∨0 .

Proof. In order to deduce this from Proposition 3.3, we need to know certain
properties of the K∨-homology of the spectra involved, the local references
for which we summarize in the following table.

KO K TMF1(3) LK(1)LK(2)TMF1(3) TMF
p-adic, even (3.9) (3.8) [LN12, 5.4] [LN12, 5.4] (3.4)+(3.9)
ind-étale K∨0 (3.9) (3.8) [LN12, 5.8] [LN12, 5.8] (3.4)
smooth subring (3.9) (3.8) [LN12, 6.1] [LN12, 3.5] (3.14)
no cohomology * (3.8) [LN12, 5.8,3] [LN12, 5.8,3] *

Here, the rows correspond to the itemized conditions in Proposition 3.3 and
the columns to the spectra under consideration. Note an entry means that
the given spectrum satisfies any assertions about either the domain spectrum
X or the target Y . The statements labeled with an asterisk are actually
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false: K∨0 (KO) and K∨0 (TMF) are not cohomologically trivial Z×2 -modules.
These statements are not needed, because this proposition does not make
any assertions about maps into KO or TMF.

Corollary 3.5. There is a diagram of E∞-maps

TMF = LK(1)tmf
cK(1) //

oK(1)

��

KO = LK(1)ko

ιK(1)

��
TMF1(3) = LK(1)tmf1(3)

c̃K(1) // K = LK(1)ku,

(3.16)

with diagram (3.7) being realized by the K∨0 -homology of diagram (3.16) and
diagram (3.16) commuting up to homotopy in the category of E∞-ring spectra.

Proof. Applying Proposition 3.4, we obtain E∞-maps oK(1), c̃K(1), and ιK(1)

that are characterized up to homotopy by satisfyingK∨0 (oK(1)) = d, K∨0 (c̃K(1)) =
c, andK∨0 (ιK(1)) = b. From Proposition 3.2 we already have the E∞-map cK(1)

satisfying K0(cK(1)) = a. Note that we do not need to know whether a is
characterized by its effect in K∨-homology.

Proposition 3.4 then reduces the homotopy commutativity of diagram (3.16)
to the previously established commutativity of diagram (3.7).

3.3 Chromatic gluing of maps

We briefly remind the reader of chromatic pullbacks in stable homotopy,
referring to the introduction of [GHMR05] for more details and references.

Fixing a prime p, every p-local spectrum X maps canonically to a tower of
Bousfield localizations

X −→ (· · ·LnX −→ Ln−1X −→ · · · −→ L0X = X ⊗Q) ,

and the various stages of this tower are determined by canonical homotopy
pullbacks, called chromatic fracture squares [HS99] or [Lura, Lecture 23,
Proposition 5]:

LnX //

��

LK(n)X

��
Ln−1X // Ln−1(LK(n)X)

(3.17)
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Here, K(n) denotes any Morava K-theory of height n at the prime p and
the localization functor Ln is naturally equivalent to LK(0)∨···∨K(n). We will
write LK(1)LK(2)X for the iterated localization LK(1)LK(2)X, and similarly
for other iterates.

We will use other canonical homotopy pullbacks similar to (3.17), such as
the following:

LK(1)∨K(2)Y //

��

LK(2)Y

��
LK(1)Y // LK(1)LK(2)Y

(3.18)

Lemma 3.6. Assume fK(i) : LK(i)X → LK(i)Y (i = 1, 2) are E∞-maps such
that the diagram

LK(1)X //

fK(1)

��

LK(1)LK(2)X

LK(1)(fK(2))

��
LK(1)Y // LK(1)LK(2)Y

commutes up to homotopy in the category of E∞-ring spectra.

Then there is an E∞-map f : LK(1)∨K(2)X → LK(1)∨K(2)Y , not necessarily
unique, such that the diagrams

LK(1)∨K(2)X
f //

��

LK(1)∨K(2)Y

��

LK(1)∨K(2)X
f //

��

LK(1)∨K(2)Y

��
LK(1)X

fK(1) // LK(1)Y LK(2)X
fK(2) // LK(2)Y

commute up to homotopy.

Proof. Apply the derived mapping-space functor E∞(LK(1)∨K(2)X,−) to the
chromatic fracture square (3.18).

Corollary 3.7. There exists an E∞-map

oK(1)∨K(2) : LK(1)∨K(2)tmf → LK(1)∨K(2)tmf1(3)
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such that the diagrams of E∞-maps

LK(1)∨K(2)tmfoK(1)∨K(2)

//

��

LK(1)∨K(2)tmf1(3)

��
LK(1)tmf oK(1)

// LK(1)tmf1(3)

LK(1)∨K(2)tmfoK(1)∨K(2)

//

��

LK(1)∨K(2)tmf1(3)

��
LK(2)tmf oK(2)

// LK(2)tmf1(3)

both commute up to homotopy.

Proof. This follows from Lemma 3.6, provided we can establish the commu-
tativity up to homotopy of the following diagram of E∞-ring spectra:

LK(1)tmf
oK(1) //

��

LK(1)tmf1(3)

��
LK(1)LK(2)tmf

LK(1)(oK(2)) // LK(1)LK(2)tmf1(3)

(3.19)

The initial and terminal objects in this diagram appear in Proposition 3.4,
and so it suffices to see that the induced diagram in K∨-homology commutes:

V //

��

K∨0 LK(1)tmf1(3)

��
K∨0 LK(1)LK(2)tmf // K∨0 LK(1)LK(2)tmf1(3)

This holds true because both composites classify isomorphic trivializations
of the elliptic curves y2 + xy+ a−3y = x3 and y2 + axy+ y = x3 over Z ((a))∧2∼= π0LK(1)LK(2)tmf1(3) (see Section 2).

Proposition 3.8. There exists a diagram of E∞-ring spectra which commutes
up to homotopy as follows:

LK(1)∨K(2)tmf
cK(1)∨K(2) //

oK(1)∨K(2)

��

LK(1)∨K(2)ko

ιK(1)∨K(2)

��
LK(1)∨K(2)tmf1(3)

c̃K(1)∨K(2) // LK(1)∨K(2)ku
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Proof. We have the following diagram of E∞-ring spectra which commutes
up to homotopy:

LK(1)∨K(2)tmf //

oK(1)∨K(2)

��

LK(1)tmf
cK(1) //

oK(1)

��

LK(1)ko

ιK(1)∨K(2)

��
LK(1)∨K(2)tmf1(3) // LK(1)tmf1(3)

c̃K(1) // LK(1)ku

(3.20)

Here, the left square is from Corollary 3.7, and the right one is from Corol-
lary 3.5. Since LK(1)∨K(2)ko ' LK(1)ko and similarly for ku, we can define
the upper and lower horizontal composites to be cK(1)∨K(2) and c̃K(1)∨K(2)

respectively.

3.4 The rational maps

We first note the following about rational E∞-ring spectra.

Lemma 3.9. Suppose X and Y are E∞-ring spectra such that π∗X ⊗ Q
is a free graded-commutative Q-algebra on generators in even nonnegative
degrees, and π∗Y is rational with homotopy in nonnegative odd degrees. Then
the natural map

π0E∞(X, Y )→ Homgraded rings(X∗, Y∗)

is bijective, and all path components of the derived mapping space E∞(X, Y )
are simply connected.

Proof. Since Y is rational, the natural map

E∞(X ⊗Q, Y )→ E∞(X, Y )

is a weak equivalence. As X ⊗ Q is equivalent to a free HQ-algebra on
some family of cells xi : S

2ni → X, evaluation on the generators gives a weak
equivalence, natural in Y , of the form

E∞(X ⊗Q, Y )→
∏

Ω∞+2niY.

The result follows by considering π0 and π1 of the right-hand side.
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Theorem 3.10. There exists a strictly commutative diagram in the category
of rational E∞-ring spectra as follows:

LK(0)tmf //

��

$$

LK(0)ko

��

!!

LK(0)tmf1(3) //

$$

LK(0)ku

!!

LK(0)LK(1)∨K(2)tmf //

��

LK(0)LK(1)∨K(2)ko

��
LK(0)LK(1)∨K(2)tmf1(3) // LK(0)LK(1)∨K(2)ku

(3.21)
In this diagram, the bottom square is the rationalization of the diagram dis-
played in Proposition 3.8 and the diagonal maps are arithmetic attaching
maps.

Proof. To construct diagram (3.21) we must first construct the maps in the
top square of the cube as to render the entire diagram homotopy commuta-
tive. Recall:

π∗tmf ⊗Q ∼= Q[c4, c6] where |ci| = 2i

π∗tmf1(3)⊗Q ∼= Q[A,B] |A| = 2, |B| = 6 [LN12, proof of Theorem 1.1]

π∗ku⊗Q ∼= Q[β] |β| = 2

π∗ko⊗Q ∼= Q[β2]

In nonnegative degrees, the diagonal maps in diagram (3.21) are given on
homotopy groups by extension of scalars from Q to Q2.

Evaluating the modular forms c4 and c6 on

y2 + Axy +By = x3,

the universal elliptic curve with Γ1(3)-structure used to construct tmf1(3),
we find that

c4 7→ A4 − 24AB , c6 7→ −A6 + 36A3B − 216B2.
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Similarly, evaluating at the Tate curve y2 + βxy = x3, we find that

A 7→ β, B 7→ 0, (3.22)

and
c4 7→ β4, c6 7→ −β6.

These formulas make diagram (3.21) commutative on homotopy groups.

The homotopy groups of the spectra in the upper square of diagram (3.21)
form polynomial algebras, and all spectra in the diagram have zero homotopy
in positive odd degrees. Lemma 3.9 thus implies that constructing the maps
in this diagram is equivalent to defining the maps on homotopy groups, and
that the homotopy-commutativity of each square subdiagram is equivalent
to the commutativity of the square on homotopy groups. This shows that
the cubical diagram commutes in the homotopy category.

Finally, the obstruction to lifting a homotopy commutative cubical diagram
to an honestly commutative, homotopy equivalent cubical diagram lies in
π1E∞(LK(0)tmf, LK(0),K(1)∨K(2)ku), which is the zero group (again by Lemma
3.9).

Corollary 3.11. There is a commutative square of E∞-ring spectra as fol-
lows:

LK(0)∨K(1)∨K(2)tmf
cK(0)∨K(1)∨K(2) //

oK(0)∨K(1)∨K(2)

��

LK(0)∨K(1)∨K(2)ko

ιK(0)∨K(1)∨K(2)

��
LK(0)∨K(1)∨K(2)tmf1(3)

c̃K(0)∨K(1)∨K(2) // LK(0)∨K(1)∨K(2)ku

(3.23)

Proof. For theK(0)∨K(1)∨K(2)-local spectra under consideration, LK(1)∨K(2)

is p-adic completion. We have canonical arithmetic squares

LK(0)∨K(1)∨K(2)Y //

��

LK(1)∨K(2)Y

��
LK(0)Y // LK(0)LK(1)∨K(2)Y.

We can then take levelwise homotopy pullbacks of the maps

LK(0)Y → LK(0)LK(1)∨K(2)Y ← LK(1)∨K(2)Y

from the diagonals of diagram (3.21) and obtain the desired commutative
square.
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4 The cohomology computation

The techniques used in this section are very similar to those employed in
[Rez] to calculate H∗(tmf).

Let p be a prime, abbreviate H := HFp and recall that the dual Steenrod
algebra A∗ = H∗H takes the form

A∗ ∼=

{
P
(
ξ̄1, ξ̄2, . . . ,

)
if p = 2,

P (ξ̄1, ξ̄2, . . .)⊗ E(τ̄0, τ̄1 . . .) if p 6= 2.

Suppose a p-local spectrum X is connective and of finite type, with a map
X → H, such that the mod-p homology maps isomorphically to the sub-
Hopf-algebra of A∗ given by

H∗X ∼=

{
P
(
ξ̄2

1 , . . . , ξ̄
2
n+1, ξ̄n+2, . . .

)
if p = 2,

P (ξ̄1, . . .)⊗ E(τn+1, . . .) if p 6= 2.

For example, this is true when X = BP〈n〉. In these circumstances the
Adams spectral sequence degenerates, and we find that

π∗X ∼= Z(p)[v1, . . . , vn]

where |vi| = 2(pi − 1) [Rav86, Chapter 4, Section 2, page 111]. (This is only
necessarily an isomorphism as graded abelian groups unless X is a homotopy
commutative and associative ring spectrum.) We will establish a converse to
this isomorphism under the assumption that X is a ring spectrum in Theorem
4.3.

Definition 4.1. A p-local ring spectrum R is a generalized BP〈n〉 if it admits
a complex orientation such that the resulting composite map

Z(p)[v1, . . . , vn] ⊆ π∗BP → π∗MU(p) → π∗R

is an isomorphism.

We remark that as the element vi is an invariant of the formal group modulo
(p, v1, . . . , vi−1), the property of a p-local, homotopy commutative, complex
orientable ring spectrum being a generalized BP〈n〉 depends only on the
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ring structure and is independent of the choice of complex orientation. In
particular, it does not depend on the choice of Hazewinkel, Araki, or arbitrary
other p-typical vi-classes.

We also note that any generalized BP〈n〉 is the connective cover of its Ln-
localization, which is the same as its LK(0)∨K(1)∨···∨K(n)-localization. This fact
served as the basis for the construction of tmf1(3) by chromatic fracture.
There does not appear to be an easier method to prove this than direct
calculation: the chromatic fracture squares give rise to an isomorphism

π∗LnBP〈n〉 ∼= BP〈n〉∗ ⊕ Σ−kBP〈n〉∗/(p
∞, v∞1 , . . . , v

∞
n ),

where k = (
∑n

i=0 2pn− 2)− 1. There are many closely related spectra where
the identification as a connective cover fails.

The authors are not aware of any results establishing uniqueness of BP〈n〉
when n ≥ 2. It is not clear when, after forgetting the ring spectrum structure,
two generalized BP〈n〉 with nonisomorphic formal groups might have the
same underlying homotopy type. It is also not clear, for any particular formal
group of the correct form, how many weak equivalence classes of generalized
BP〈n〉 might exist realizing this formal group. (There exist results if one
assumes additional structure, such as that of an MU -module or MU -algebra;
see, for example, [JW].)

The following is a consequence of Definition 4.1 and of the existence of the
Quillen idempotent splitting MU(p) → BP .

Lemma 4.2. Suppose R is a generalized BP〈n〉. Then there are maps of
ring spectra BP → R→ H, with the former map (2pn+1 − 2)-connected and
the latter unique up to homotopy. If R is an A∞-ring spectrum or an E∞-
ring spectrum, then the map R→ H is a map of A∞-ring spectra or E∞-ring
spectra accordingly.

Theorem 4.3. Suppose R is a generalized BP〈n〉. Then the map R → H
induces an isomorphism of H∗R with the left A∗-module A∗//E(n), and of
H∗R with the subalgebra B∗ of the dual Steenrod algebra given as follows:

B∗ =

{
P (ξ̄2

1 , . . . , ξ̄
2
n+1, ξ̄n+2, . . .) if p = 2,

P (ξ̄2
1 , . . .)⊗ E(τ̄n+1, . . .) if p 6= 2.
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Proof. We recall from [BJ02, Theorem 3.4] that the Brown-Peterson spec-
trum BP admits an A∞ ring structure (in fact, it admits many). In the fol-
lowing we choose one for definiteness. Smashing the maps from Lemma 4.2
on the right with BP gives a sequence of maps

BP ∧BP → R∧BP → H ∧BP.

Complex orientability of BP , R, and H implies that on homotopy groups,
this becomes the sequence of maps of polynomial algebras

BP∗[ti]→ R∗[ti]→ Fp[ti],

with the polynomial generators ti mapped identically. We then apply the
natural equivalence (−∧BP )∧BP H ' (−)∧H, together with the Künneth
spectral sequence [EKMM97, Theorem IV.4.1], to obtain a natural map of
spectral sequences:

TorBP∗∗∗ (R∗[ti],Fp)→ TorBP∗∗∗ (Fp[ti],Fp), (4.1)

which strongly converges to the map R∗H → H∗H. Here the action of the
generators vi ∈ BP∗ is through their images under the right unit BP∗

ηR→
BP∗[ti]. Modulo (p, v1, . . . , vk−1), the image of vk under the right unit is
equal to vk.

Writing S∗ = BP∗/(p, v1, . . . , vn), we have an identification of derived tensor
products

(−⊗L
BP∗ S∗)⊗

L
S∗ Fp ∼= (−)⊗L

BP∗ Fp.

This shows that the map of equation (4.1) is the abutment of a map of
Cartan-Eilenberg spectral sequences:

TorS∗∗∗ (TorBP∗∗∗ (R∗[ti], S∗),Fp)→ TorS∗∗∗ (TorBP∗∗∗ (Fp[ti], S∗),Fp) (4.2)

The elements (p, v1, . . . , vn) form a regular sequence in R∗. The image of the
regular sequence (p, v1, . . . , vn) ∈ BP∗ under the map

BP∗
ηR→ BP∗BP → R∗BP ' R∗[ti]

is therefore a regular sequence, by induction, because every vk is invari-
ant modulo (p, . . . , vk−1) and because of the assumed properties of the map
BP∗ → R∗.
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This shows that the higher Tor-groups in

TorBP∗∗∗ (R∗[ti], S∗)

are zero, with the zero’th term given by the tensor product R∗[ti]⊗BP∗ S∗ ∼=
Fp[ti].

By contrast, the image of vk in Fp[ti] under the right unit is zero for all k,
and hence the Tor-algebras are exterior algebras.

Therefore, the map of equation (4.2) degenerates to an edge inclusion:

Fp[ti]⊗ Λ[xn+1, xn+2, . . .]→ Fp[ti]⊗ Λ[x1, . . . , xn]⊗ Λ[xn+1, xn+2, . . .]

Here ti is in total degree 2pi − 2 and xi is in total degree 2pi − 1. For the
right-hand term, the associated graded vector space already has the same
dimension in each total degree as the dual Steenrod algebra. Therefore, both
the Cartan-Eilenberg and Künneth spectral sequences must degenerate, as
the final target is the dual Steenrod algebra and any non-trivial differentials
would result in a graded vector space with strictly smaller dimension in some
degree.

We find that the map R∗H → H∗H is an inclusion of right comodules over
the dual Steenrod algebra, and the image below degree 2pn+1 − 1 consists
only of terms in even degrees. On cohomology, this implies that the map
A∗ → H∗R is a surjection of left A∗-modules, and the image of the generator
1 ∈ A∗ is acted on trivially by the odd-degree Milnor primitives Q0, . . . , Qn.
The induced map A∗//E(n) → H∗R is still a surjection and both sides are
graded vector spaces of the same, levelwise finite, dimensions over Fp.

This shows that H∗R has the desired form. The statement for homology
follows by dualizing the cohomology description.

5 Proof of Theorem 1.2

We have now assembled all the preliminaries needed to give the proof of
Theorem 1.2, For ease of reference, we recall the statements we need to
prove.

27



i) There is a commutative diagram of connective E∞-ring spectra as follows:

tmf(2)
c //

o

��

ko(2)

ι

��
tmf1(3)(2)

c̃ // ku(2)

ii) In mod-2 cohomology, this induces the following canonical diagram of
modules over the mod 2 Steenrod algebra A∗:

A∗//A(2) A∗//A(1)oo

A∗//E(2)

OO

A∗//E(1).oo

OO

iii) There exists a complex orientation of tmf1(3)(2) such that in homotopy
c̃ sends the Hazewinkel generators v1 to v1 and v2 to zero.

iv) There is a cofiber sequence of tmf1(3)(2)-modules

Σ6tmf1(3)(2)
·v2−→ tmf1(3)(2)

c̃−→ ku(2).

Proof. The existence of the desired commutative diagram of E∞-ring spectra
is established by taking connective covers of diagram (3.23).

It is well known that there are isomorphisms ofA∗-modulesH∗(ko) ∼= A∗//A(1)
and H∗(ku) ∼= A∗//E(1). Theorem 1.1, together with Theorem 4.3, implies
H∗tmf1(3) ∼= P (ξ̄2

1 , ξ̄
2
2 , ξ̄

2
3 , ξ̄4, . . .) and H∗tmf1(3) ∼= A∗//E(2). A well-known

result, based on work on tmf initiated by Hopkins, Mahowald and Miller,
is that H∗(tmf) ∼= A//A(2) as a module over the Steenrod algebra [HM,
Theorem 9.2]. To the best of the authors’ knowledge, this result still awaits
official documentation. A sketch based on the characterization of [Rez, The-
orem 14.5] can be found in [Rez, Section 21].

The diagram of A∗-modules in the statement of the theorem commutes be-
cause all appearing A∗-modules are cyclic, generated by 1.

To address the remaining statements, note that the map π∗(c̃) : π∗tmf1(3)(2) →
π∗ku(2) is determined by its rationalization

Q[A,B]→ Q[β],
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where we have A 7→ β and B 7→ 0 by construction (see Theorem 3.10). Now
recall that there exists an orientation BP → tmf1(3)(2) which maps v1 to A
and v2 to B by [LN12, Proposition 8.2].

The composite tmf1(3)(2)-module map c̃ ◦ (·v2) : Σ6tmf1(3)(2) → ku(2) sends
the generator to 0 = π∗(c̃)(v2) ∈ π6(ku(2)), and hence there is a factorization
in the category of tmf1(3)(2)-modules

Σ6tmf1(3)(2)
·v2 //

0

))

tmf1(3)(2)
//

c̃

��

cof((·v2))

uu
ku(2)

Examining homotopy groups, we get an induced equivalence between ku(2)

and the cofiber of v2 as spectra, and hence as tmf1(3)(2)-modules.

A Appendix: Forms of K-theory

In this section we describe how to functorially construct certain forms of K-
theory [Mor89] as E∞-ring spectra, and then give a discussion of a form of
K-theory related to tmf1(3)(2). The core content is a restatement of the fact
that complex conjugation acts on KU by E∞-ring maps, that the group Z×p
acts on KU∧p by E∞-ring maps, and that the element −1 acts compatibly with
complex conjugation. (However, these forms receive less attention than they
might, and the reader who has not read Morava’s paper recently deserves a
reminder to do so.)

Indeed, some of this section could be regarded as consequences of the Goerss-
Hopkins-Miller theorem [Rez98, GH04]. After p-completion, any form of K-
theory that we construct is a Lubin-Tate spectrum for the formal group law
over its residue field, and the spaces of E∞-maps are homotopically discrete
and equivalent to certain sets of isomorphisms between the associated formal
group laws.

Definition A.1. A form of the multiplicative group scheme over X is a
group scheme over X which becomes isomorphic to Gm after a faithfully
flat extension. (This is the same as a one-dimensional torus in the sense of
SGA3.)
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If X is a formal scheme over Spf(Zp), a form of the formal multiplicative
group over X is a 1-dimensional formal group over X whose reduction to
X/p is of height 1.

Remark A.2. There are numerous examples of forms of Gm. For b and c in
R, there is a group scheme structure with unit 0 on the complement of the
roots of 1 + bx+ cx2 in P1, given by

F (x, y) =
x+ y + bxy

1− cxy
.

The isomorphism class of such an object (by an isomorphism fixing the in-
variant diffential) is determined by the isomorphism class of y2 +by+c under
translations y 7→ y + r, and the object is a form of Gm if and only if the
discriminant b2 − 4c is invertible. Morava was originally interested in the
specific formal group laws of the form

F (x, y) =
x+ y + (1− a)xy

1 + axy
.

Definition A.3. We denote by MGm/Spec(Z) the stack which is is the
moduli of forms of the multiplicative group scheme Gm. For a fixed prime
p, we denote byMĜm

/Spf(Zp) the stack which is the moduli of forms of the

formal multiplicative group Ĝm.

Proposition A.4. The stackMGm is equivalent to the stack BC2 classifying
principal C2-torsors, and the stack MĜm

is equivalent to the stack BZ×p =

limB(Z/pk)× classifying compatible systems of principal (Z/pk)×-torsors.

Proof. The group scheme Gm is defined over Z and its sheaf of automor-
phisms is the constant group scheme C2 of order two; as a result, for any
X equipped with G → X a form of Gm, there is a principal C2-torsor
Y = IsoX(Gm,G) classifying isomorphisms between G and Gm; on Y there is
a chosen isomorphism Gm → G. Conversely, given such a C2-torsor Y → X
we can recover G as the quotient Gm ×C2 Y → Spec(Z)×C2 Y = X.

In other language, the moduli stack MGm is equivalent to the stack BC2

classifying principal C2-torsors.

Similarly, for a formal group law G let G[pk] be the group scheme of pk’th
roots of unity. The sheaf of automorphisms of Gm[pk] is the constant group
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scheme (Z/pk)×. Any formal group G of height 1 on a formal scheme X over
Zp carries a sequence of covers Yk = Iso(Gm[pk],G[pk]); any height 1 formal
group étale-locally has its torsion isomorphic to that of Gm, and so the Yk
form a tower of principal (Z/pk)×-torsors on X. Conversely, the inductive
system of schemes G[pk] can be recovered as Gm[pk]×(Z/pk)× Yk.

Because X is a formal scheme over Spf(Zp), X is a colimit of schemes where
p is nilpotent; we then wish to know that the formal group G is equivalent
data to the directed system G[pk]. One can recover this from an equivalence
between formal groups of height 1 and p-divisible groups of height 1 and
dimension 1.

At its core, however, this is locally based on the observation that for a for-
mal group law of height 1 on a p-adically complete ring R, the Weierstrass
preparation theorem implies that the Hopf algebra R [[x]] /[pk](x) representing
G[pk] is free on the basis {1, x, . . . , xpk−1}. Both R [[x]] and its multiplication
are recovered uniquely by the inverse limit of these finite stages. The map
G[p] → G[pk] induces an isomorphism on cotangent spaces at the identity,
and so any coordinate on G[p] automatically produces coordinates on G[pk]
and then G itself.

Both of these moduli stacks naturally carry 1-dimensional formal groups, as
follows. The stack MĜm

carries a universal formal group by definition, and
the stackMGm by taking the completion of its universal group scheme (which
is affine and one-dimensional since these are flat-local properties). Therefore,
it makes sense to ask if these formal groups can be realized by spectra; see
[Goe10, Section 4.1] for details on such realization problems. The formal
groups give rise to a commutative diagram of maps to the moduli stackMfg

of formal groups:
(MGm)∧p

��

//MĜm

��
MGm

//Mfg

Here (MGm)∧p is the base change ofMGm to Spf(Zp). The realization problem
for most of the above diagram has a solution.

Theorem A.5. There exist lifts OtopMGm
(resp. OtopMĜm

) of the structure sheaves

of MGm (resp. MĜm
) to sheaves of weakly even-periodic E∞-ring spec-
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tra, along with an isomorphism between the formal group from the complex-
orientable spectrum structure and the formal group pulled back from Mfg.
The homotopy groups of both Otop and O in degree 2k are, on affine charts,
the tensor powers ω⊗k of the sheaf of invariant differentials.

Given a diagram of solutions to the realization problem on the above stacks,
one would expect to obtain the following upon taking global sections.

KO∧p SK(1)
oo

KO

OO

Soo

OO

The maps in this diagram are all unit maps for the associated ring spectra.

Proof. We first construct pre-sheaves of E∞-ring spectra defined on affines.

Given an étale map Spec(R)→MGm , we form the pullback:

Spec(T ) //

��

Spec(R)

��
Spec(Z) //MGm

(Since the constant group scheme Z/2Z is affine, so is the canonical map
Spec(Z)→MGm , showing the above pull-back is indeed affine.)

Then Spec(T ) → Spec(R) is a Galois cover with Galois group C2. The
cohomology groups H i(C2;T ) are therefore trivial for i > 0, and the fixed
subring H0(C2, T ) is equal to R. Furthermore, if ε denotes the C2-module Z
with the sign action, the cohomology groups H i(C2; ε⊗ T ) vanish for i > 0.
(This will be relevant because π2KU ∼= ε as a C2-module.)

The map Z → T is étale, and so there is a homotopically unique, and C2-
equivariant, realization S→ S(T ) such that π∗S(T ) = π∗S⊗T by the results
of [BR07, Section 2] or [Lurb, Theorem 7.5.0.6]. Write σ for the generator
of C2. The C2-action on T is compatible with the negation action on the
multiplicative group scheme over T .

Since π∗S(T ) = π∗S⊗Z T is flat over π∗S, we have an isomorphism

π∗(KU ∧S(T )) ∼= π∗KU ⊗π∗S π∗S(T ) ∼= π∗KU ⊗Z T.
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The group C2 acts via the diagonal ψ−1 ∧ σ on KU ∧ S(T ); this action lifts
the C2-action on the formal group law of KU ∧ S(T ). We therefore obtain a
homotopy fixed-point spectrum OpreMGm

(R) := (KU ∧ S(T ))hC2 . The vanish-
ing of the higher group cohomology implies that the homotopy fixed-point
spectral sequence degenerates into an isomorphism

π∗OpreMGm
(R)

∼=→ H0(C2;KU∗ ⊗Z T ).

We have
π2OpreMGm

(R) ∼= H0(C2, ε⊗ T ) ∼= T σ=−1 ⊆ T. (A.1)

This is a projective R-module of rank 1 and hence invertible, and one con-
cludes that this ring of invariants is weakly even-periodic. An application of
[LN12, Lemma 3.8] shows the formal group of OpreMGm

(R) is the one classified
by the given map R→MGm .

The construction of S(T ) can be made functorial in the C2-equivariant alge-
bra T , and so this gives rise to the desired presheaf OpreMGm

on affine objects
over MGm .

We now discuss a similar setup for MĜm
and forms of the multiplicative

formal group, based on work of Behrens and Davis.

Following [BD10, Section 8], let F1 be the homotopy colimit of the Devinatz-
Hopkins homotopy fixed-point spectra:

F1 := colim
n

(KU∧p )dh(1+pnZp)

This is a discrete E∞ Z×p -spectrum with K(1)-localization KU∧p .

Given a p-adic Zp-algebra R with an étale map

Spf(R)→MĜm
= lim[Spf(Zp)//(Z/pn)×]

classifying a formal group G over R, we form the system of pullbacks

Spf(Tn) //

��

Spf(Zp)

��
Spf(R) //MĜm

// [Spf(Zp)//(Z/pn)×]
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The maps Spf(Tn)→ Spf(R) are the Galois covers with Galois group (Z/pn)×

trivializing G[pn]. We consider the Zp-algebra T = colimTn, which is an ind-
Galois extension of R with Galois group Z×p and discrete Z×p -action. The
maps Zp → Tn are étale because the classifying map of G is.

As in the case of MGm above, we functorially realize this to obtain a Z×p -
equivariant directed system S∧p → S∧p (Tn) of E∞-ring spectra, with the action
on S∧p (Tn) factoring through (Z/pn)×, such that π∗S∧p (Tn) = π∗S∧p ⊗Zp Tn. We
finally introduce the discrete E∞ Z×p -spectrum

S∧p (T ) = hocolim
n

S∧p (Tn).

The homotopy of S∧p (T ) is isomorphic to π∗S∧p ⊗Zp T . The E∞-ring spec-
trum F1 ∧ S∧p (T ) is a discrete Z×p -spectrum with the diagonal action, acting
as the Morava stabilizer on F1 and via the Galois action on S∧p (T ). As
this spectrum is E(1)-local, the K(1)-localization of F1 ∧ S∧p (T ) is equivalent
to the p-completion (KU ∧ S∧p (T ))∧p , with homotopy groups isomorphic to

π∗KU
∧
p ⊗̂ZpT

∧
p . We define our presheaf to take R to be a continuous homo-

topy fixed-point object:

OpreMĜm
(R) = LK(1)

(
(F1 ∧S∧p (T ))hZ

×
p

)
The homotopy fixed-point spectrum is E(1)-local, and so K(1)-localization
is still simply p-adic completion.

We will now show that the resulting spectrum is even-periodic using the
homotopy fixed-point spectral sequence (see [LN12, Theorem 5.1])

Hs
c (Z×p , (KU∧p )t ⊗Zp T

∧
p )⇒ πt−s(OpreMĜm

(R)).

Fix n ∈ Z. We will show that the continuous cohomology of Z×p with coeffi-

cients in W := KU∧p,2n⊗̂ZpT
∧
p vanishes for s > 0, and the zero’th cohomology

group is free of rank one over R. Multiplication by the Bott element shows
that the Z×p -module W is isomorphic to T∧p twisted by the p-adic character
α 7→ αn.

Since Spf(R) = Spf(T1) → Spf(Zp) is étale, T1 = R must be isomorphic to
a finite product of copies of W (Fq) with q a power of p. Therefore, without
loss of generality we may assume R = W (Fq).
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For any m ≥ 1, there exists a sufficiently large k so that the subgroup
U := (1 +pkZp)× < Z×p acts trivially on Z/pm by the character α 7→ αn. The
continuous cohomology of U with coefficients in W/pm then coincides with
the continuous cohomology of U with coefficients in T/pm. However, as T/pm

is a Galois extension of Tk/p
m with Galois group U , the higher cohomology

vanishes and the zero’th cohomology is isomorphic to Tk/p
m. The Lyndon-

Hochschild-Serre spectral sequence associated to 1→ U → Z×p → (Z/pk)× →
1 then degenerates to an isomorphism

Hs
c (Z×p ;W/pm) ∼= Hs((Z/pk)×; π2nKU/p

m ⊗ Tk).

However, the map R/pm → Tk/p
m is a Galois extension with Galois group

(Z/pk)×; it is in particular faithfully flat, and the fixed-point functor is part of
and equivalence between R/pm-modules and Tk/p

m-modules equipped with a
semilinear Galois action. In particular, the higher cohomology groups vanish,
and by faithfully flat descent the R/pm-module (π2nKU/p

m ⊗ Tk)(Z/pk)× is
projective of rank one. The base ring R/pm is isomorphic to W (Fq)/pm,
which is local, so the module is actually free of rank one. Moreover, the
isomorphism π2n⊗R π2m → π2(n+m) induced by multiplication descends to an
isomorphism on invariants.

Taking limits in m, we find that the higher continuous cohomology groups
with coefficients in W vanish, and that the module of invariants of W is free
of rank one.

As a result, we find π∗OpreMĜm
(R) = R[u±1] for some unit u in degree 2. In

particular, then, OpreMĜm
(R) is complex orientable.

The formal group G and the formal group associated with a complex orien-
tation of OpreMĜm

(R) both arise from the same descent data on T∧p , and so the

associated formal group is isomorphic to G.

We now take these spectra defined on affine étale charts and extend them
to sheaves. Specifically, functoriality in R allows us to sheafify, associated
fibrant objects in the Jardine model structure are functors OtopMGm

and OtopMĜm

of E∞-ring spectra on general schemes overMGm andMĜm
respectively. On

any affine R, the map Opre → Otop is a weak equivalence on stalks, and
the presheaves of homotopy groups of Opre are the quasicoherent sheaves
ωt of invariant differentials on any affine R. The sheaves associated to the
homotopy groups of Otop are therefore the same, and the map Opre(R) →
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Otop(R) is an equivalence for affine R, and for a general R it is recovered as
a homotopy limit. For a more detailed account of this argument in a very
similar situation see [Beh, Sections 2.3-2.5].

Remark A.6. i) The above construction is motivated by the fact that for
the K(1)-local (E∞-ring) spectrum X = OtopMĜm

(R), one has a canonical

equivalence

X
'→
(
LK(1)(KU

∧
p ∧X)

)hZ×p ,
[DT, Theorem 1.3], where on the right-hand side the group Z×p acts
through the factor KU∧p alone. Briefly, X can be recovered from its K-
theory. Our construction is such that there is an equivalence of continous
Z×p -spectra

LK(1)(KU
∧
p ∧X) ' LK(1)(KU

∧
p ∧ S∧p (T )),

where Sp(T ) is built from the principal torsor on π0X = R and Z×p on
the right-hand side acts diagonally on both factors.

ii) During the above proof we saw that the étale site of MĜm
is not very

big. Specifically, all its affine objects are disjoint unions of maps from
some Spf(W (Fq)) classifying a formal group of height one. These formal
groups over W (Fq) in turn are classified by p-adic units α ∈ Z×p . All
morphisms of the site are generated by change-of-base and by automor-
phisms inducing p-adic Adams operations. Existence and uniqueness
of these realizations on affine coordinate charts is the content of the
Goerss-Hopkins-Miller theorem, which lifts the local version of Morava’s
construction to E∞-rings.

iii) Morava considers many more forms of K-theory than are given by the
values of these sheaves, TateK-theory being a prominent example [Mor89,
Theorem 2]. We take this as an opportunity to document the well-known
fact that E∞-realizations put very restrictive conditions on ramification.
The authors learned the following argument from Mike Hopkins. Though
these types of arguments have been known (e.g. by Ando, Strickland,
and others) for several decades, the authors were unable to track down
a published reference.

Specifically, assume p 6= 2 and consider the extension KU∧p (−)⊗ZpZp[ζp]
which adjoins a p’th root of unity (for p = 2 a similar argument consid-
ering the extension Z2 ⊆ Z2[i] works). Since the extension Zp → Zp[ζp]
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is flat, this is a multiplicative cohomology theory which is a form of K-
theory in Morava’s sense. The corresponding homotopy-commutative
ring spectrum does not admit an E∞-refinement. The K(1)-local power
operations would provide a lift of Frobenius ϕ : Zp[ζp]→ Zp[ζp] reducing
to the p’th power map mod (p). However, the only endomorphisms of
this ring are automorphisms, and the p’th power map is not injective
mod p. That a fourth root of unity cannot be adjoined to the sphere at
p = 2 is shown in [SVW99].

To conclude this appendix, we explain an application of Theorem A.5 relevant
to the main concern of the present paper. Consider the generalized elliptic
curve

y2 + 3xy + y = x3

over Z[1/3]. It lies over the unramified cusp of M1(3). To identify the
resulting formal group we observe that the curve has a nodal singularity at
(−1, 1), and that the coordinate t = (x + 1)/(y − 1) gives an isomorphism
between the smooth locus of this curve and P1 \ {t | t2 + 3t + 3 = 0}, with
multiplication

G(t, t′) =
tt′ − 3

t+ t′ + 3

and unit at t =∞. The coordinate t−1 gives an associated formal group law

F (x, y) =
x+ y + 3xy

1− 3xy
.

This is not isomorphic to the multiplicative formal group over Z[1/3], but
becomes so after adjoining a third root of unity ω. It is classified by an étale
map f : Z[1/3] → MGm and we can consider the form of K-theory KU τ

given by OtopMGm
(f). Denoting β ∈ π2KU the Bott element one can check

KU τ
∗ = Z[1/3][(

√
−3β)±1] ⊆ KU∗ ⊗Z Z[1/3][ω].

For any p 6= 3, the p-adic completion of KU τ is a Lubin-Tate spectrum for
its formal group law. In the obstruction theory of Section 3, one can equally
well substitute the ramified cusp KU τ for KU into the construction. In place
of the maps of equation (3.22), we would then have

A 7→
(√
−3β

)
, B 7→ − 1

27

(√
−3β

)3
.
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