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Abstract. For finitely generated groups G and H, we prove that there is a weak
equivalence KG∧ku KH ' K(G × H) of ku-algebra spectra, where K denotes the
“unitary deformation K-theory” functor. Additionally, we give spectral sequences
for computing the homotopy groups of KG and HZ∧ku KG in terms of connective
K-theory and homology of spaces of G-representations.

1. Introduction

The underlying goal of many programs in algebraic K-theory is to
understand the algebraic K-groups of a field F as being built from the
K-groups of the algebraic closure of the field, together with the action
of the absolute Galois group. Specifically, Carlsson’s program (see [2])
is to construct a model for the algebraic K-theory spectrum using the
Galois group and the K-theory spectrum of the algebraic closure F .

In some specific instances, the absolute Galois group of the field
F is explicitly the profinite completion Ĝ of a discrete group G. (For
example, the absolute Galois group of the field k(z) of rational func-
tions, where k is an algebraically closed of characteristic zero, is the
profinite completion of a free group.) In the case where F contains an
algebraically closed subfield, the profinite completion of a “deformation
K-theory” spectrum KG is conjecturally equivalent to the profinite
completion of the algebraic K-theory spectrum KF .

Additionally, it would be advantageous for this description to be
compatible with the motivic spectral sequence. This deformation K-
theory spectrum has an Atiyah-Hirzebruch spectral sequence arising
from a spectrum level filtration. The filtration quotients are spectra
built from isomorphism classes of representations of the group. It is
hoped that this filtration is related to the motivic spectral sequence,
and that this relation would give a greater understanding of the rela-
tionships between Milnor K-theory, Galois cohomology, and the repre-
sentation theory of the Galois group.

We now outline the construction of deformation K-theory. To a
finitely generated group G one associates the category C of finite dimen-
sional unitary representations of G, with morphisms being equivariant
isometric isomorphisms. Elementary methods of representation theory
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allow this category to be analyzed; explicitly, the category of unitary
G-representations is naturally equivalent to a direct sum of copies of
the (topological) category of unitary vector spaces.

However, there is more structure to C. First, there is a bilinear tensor
product pairing. Second, C can be given the structure of an internal
category Ctop in Top. This means that there are spaces Ob(C top) and
Mor(Ctop), together with continuous domain, range, identity, and com-
position maps, satisfying appropriate associativity and unity diagrams.
The topology on Ob(Ctop) reflects the possibility that homomorphisms
from G to U(n) can continuously vary from one isomorphism class of
representations to another. The identity map on objects and morphisms
is a continuous functor C → Ctop that is bijective on objects.

Both of these categories have notions of direct sums and so are
suitable for application of an appropriate infinite loop space machine,
such as Segal’s machine [19]. This yields a map of (ring) spectra as
follows:

KC '
∨

ku→ KCtop def
= KG. (1)

Here K is an algebraic K-theory functor, ku is the connective K-theory
spectrum, and the wedge is taken over the set of irreducible unitary
representations of G. Note that π∗(KC) ∼= R[G] ⊗ π∗(ku) as a ring,
where R[G] is the unitary representation ring of G.

The spectrum KG is the unitary deformation K-theory of G. It dif-
fers from the C∗-algebra K-theory of G—for example, in section 8, we
find that the unitary deformation K-theory of the discrete Heisenberg
group has infinitely generated π0.

When G is free on k generators, one can directly verify the formula

KG ' ku ∨

(
k∨

Σku

)
.

A more functorial description in this case is that KG is the connective
cover of the function spectrum F (BG+, ku). This formula does not hold
in general; even in simple cases KG can be difficult to directly compute,
such as when G is free abelian on multiple generators.

In this paper, we will prove the following product formula for unitary
deformation K-theory.

THEOREM 1. The tensor product map induces a map of commutative
ku-algebra spectra KG∧kuKH → K(G × H), and this map is a weak
equivalence.

The reader should compare the formula

R[G]⊗R[H] ∼= R[G×H]
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for unitary representation rings.
The proof of Theorem 1 proceeds by making use of a natural fil-

tration of KG by subspectra KGn. These subspectra correspond to
representations of G whose irreducible components have dimension less
than or equal to n. Specifically, we show in sections 5 and 6 that there
is a homotopy fibration sequence of spectra

KGn−1 → KGn → (Hom(G,U(n))/Sum(G, n)) ∧
PU(n)

kuPU(n).

Here Sum(G, n) is the subspace of Hom(G,U(n)) consisting of those
representations G → U(n) containing a nontrivial invariant subspace.
The spectrum kuPU(n) is a connective PU(n)-equivariant K-homology
spectrum discussed in section 3.

As side benefits of the existence of this filtration, Theorems 31 and 33
give spectral sequences for computing the homotopy groups of KG and
the homotopy groups of HZ∧kuKG respectively.

When G is free on k generators, Theorem 33 gives a spectral se-
quence converging to Z in dimension 0, Zk in dimension 1, and 0
otherwise, but the terms in the spectral sequence are highly nontrivial—
they are the homology groups of the spaces of k-tuples of elements of
U(n), mod conjugation and relative to the subspace of k-tuples that
contain a nontrivial invariant subspace. The method by which the terms
in this spectral sequence are eliminated is a bit mysterious.

The layout of this paper is as follows. Section 2 gives the necessary
background on G-equivariant Γ-spaces for a compact Lie group G, al-
lowing identification of equivariant smash products. The model theory
of such functors was considered when G is a finite group in [4], using
simplicial spaces. Our approach to the proofs of the results we need
follows the approach of [3]. In Section 3 we give explicit constructions
of an equivariant version of connective K-theory. In Section 4 the uni-
tary deformation K-theory of G is defined, and Sections 5 and 6 are
devoted to constructing the localization sequences, in particular explic-
itly identifying the base as an equivariant smash product. In section 7
the algebra and module structures are made explicit by making use of
results of Elmendorf and Mandell [6]. The proofs of the main theorems
are completed in sections 8 and 9.

A proof of the product formula for representations in GL(n), rather
than U(n), would also be desirable. This paper makes use of quite rigid
constructions that make apparent the identification of the base in the
localization sequence with a particular model for the equivariant smash
product. In the case of GL(n), the definitions of both the cofiber in the
localization sequence and the equivariant smash product need to be

lawson_productformula_resubmit2.tex; 27/01/2006; 13:27; p.3



4

replaced by notions that are more well-behaved from the point of view
of homotopy theory.

2. Preliminaries on G-equivariant Γ-spaces

In this section, G is a compact Lie group, and actions of G on based
spaces are assumed to fix the basepoint; a free action will be one that
is free away from the basepoint. We will now carry out constructions
of Γ-spaces in a näıve equivariant context. When G is trivial these are
definitions for topological Γ-spaces, as in the appendix of [17].

For any natural number k, denote the based space {∗, 1, . . . , k} by
k+.

Let Γo
G be the category of right G-spaces that are isomorphic to

ones the form G+ ∧ k+, with morphisms being G-equivariant. (Strictly
speaking, we take a small skeleton for this category.) The set Γo

G(X,Y )
can be given the mapping space topology, giving this category an
enrichment in spaces. Explicitly,

Γo
G(G+ ∧ k+, Z) ∼=

k∏
Z

as a space. If G is trivial we drop it from the notation.

Definition 2. A ΓG-space is a base-point preserving continuous func-
tor Γo

G → Top∗.

Here Top∗ is the category spaces, i.e. compactly generated weak
Hausdorff pointed topological spaces with nondegenerate basepoint,
which has internal function objects F (−,−).

Any ΓG-space M has an underlying Γ-space M(G+ ∧−). This Γ-
space inherits a continuous left G-action because the left action of G on
the first factor of G+ ∧ Y is right G-equivariant. This can be expressed
as a continuous map

φ : G→ Γo
G(G+ ∧Y,G+ ∧Y ),

given by φ(g)(h∧ y) = gh∧ y. Then the composite map

M ◦ φ : G→ F (M(G+ ∧Y ),M(G+ ∧Y )),

gives an action of G on M(G+ ∧ Y ) that is natural in Y . This gives a
G-action on the underlying Γ-space of M .
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Remark 3. More generally, if H → G is a map of groups, the formula
M 7→ M(−∧H G+) defines a restriction map from ΓG-spaces to ΓH -
spaces with a left action of C(H), the centralizer of H in G.

For technical reasons, we require the following definition.

Definition 4. A ΓG-space M is semi-cofibrant if for any Z ∈ Γo
G, the

inclusion
M̃(Z) =

⋃

Y (Z

M(Y ) ⊂M(Z)

is a cofibration of spaces.

A cofibrant Γ-space as defined in [1] would require some freeness
assumption about the action of Aut(Z) on M(Z)/M̃ (Z).

Remark 5. For any element m ∈ M(Z), there is a unique minimal
subobject Y of Z such that m is in the image of M(Y ). To see this,
consider the inclusion iY : Y → Z and the map πY : Z → Y that is
the identity on Y and sends the rest of Z to the basepoint. The map
iY πY acts as the identity on the image of M(Y ), and (iY πY )(iY ′πY ′) =
iY ∩Y ′πY ∩Y ′ .

Let X,Z ∈ Γo
G, Y a based set. The space G+ ∧ Y has commuting

left and right G-actions. This gives rise to a continuous right action
of G on Γo

G(G+ ∧ Y,Z). There is a map φ : X → Γo
G(G+ ∧ Y,X ∧ Y )

given by x 7→ φx, where φx(g ∧ y) = xg ∧ y. The map φ is clearly right
G-equivariant. Composing the map φ with the functor M gives a con-
tinuous G-equivariant map from X to F (M(G+ ∧ Y ),M(X ∧ Y )), and
the adjoint is a natural assembly map X ∧G M(G+ ∧ Y )→M(X ∧ Y ).

We can promote a ΓG-space M to a functor on all free right G-spaces,
as follows.

Definition 6. For X a right G-space, the Γ-space X ⊗G M is defined
by:

X ⊗G M(Z) =


 ∐

Y ∈Γo
G

M(Y )∧F G(Y,X ∧Z)


 / ∼ .

Here the equivalence relation ∼ is generated by relations (u∧ f ∗v) ∼
(f∗u∧ v) for f : Y → Y ′, u ∈ M(Y ), v ∈ F G(Y ′, X ∧ Z). More con-
cisely, X ⊗G M(Z) can be expressed as the coend

∫ Y

M(Y )∧F G(Y,X ∧Z).
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Remark 7. If X. is a simplicial object in the category Γo
G, there is a

natural homeomorphism |X.| ⊗G M → |M(X.)|. (A short proof can be
given by expressing |X.| as a coend

∫ n
Xn ∧∆n

+ and applying “Fubini’s
theorem”—see [11], chapter IX.) The reason for allowing G-CW com-
plexes rather than simply restricting to these simplicial objects is that
some G-homotopy types cannot be realized by simplicial objects. For
example, any such simplicial object of the form X+ is a principal G-
bundle over X/G+, and is classified by an element in H1

discrete(X/G,G).
A general X+ is classified by an element in H1

cont.(X/G,G).

We will refer to the space (X ⊗G M)(1+) as M(X); this agrees with
the notation already defined when X ∈ Γo

G. We will only apply this
construction to cofibrant objects in a certain model category of based
G-spaces; specifically, we will only apply this construction to based G-
CW complexes with free action away from the basepoint. Such objects
are formed by iterated cell attachment of G+ ∧Dn

+ along G+ ∧ Sn−1
+ .

It will be useful to have homotopy theoretic control on X⊗G M , for
the purposes of which we introduce a less rigid tensor product.

Definition 8. For M a ΓG-space, we can define a simplicial ΓG-space
LM. by setting LM(Z)p equal to

∨

Z0,...,Zp∈Γo
G

Γo
G(Zp, Z)∧Γo

G(Zp−1, Zp)∧ · · · ∧Γo
G(Z0, Z1)∧M(Z0).

The face maps are given by:

di(f0 ∧ . . .∧ fp ∧m) = f0 ∧ . . .∧ fi ◦ fi+1 ∧ . . .∧ fp ∧m if i < p,

dp(f0 ∧ . . .∧ fp ∧m) = f0 ∧ . . .∧ fp−1∧(Mfp)(m).

The degeneracy map si is an insertion of an identity map after fi for
0 ≤ i ≤ p.

Suppose M is a semi-cofibrant ΓG-space. For any p and Z, the
subspace of LM(Z)p consisting of degenerate objects is the union of
the subspaces that contain an identity element in some component of
the smash product. All the spaces in the smash product are nondegen-
erately based cofibrant objects, and so the inclusion of the degenerate
subcomplex is a cofibration. As a result, this simplicial space is good in
the sense of [19], Appendix A, and so the geometric realization of it is
homotopically well-behaved.

The simplicial ΓG-space LM. has a natural augmentation LM. →M .
The augmented object LM. → M has an extra degeneracy map s−1,
defined by

s−1(f0 ∧ . . .∧ fp∧m) = id∧ f0 ∧ . . .∧ fp∧m.
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As a result, the map |LM.(Z)| →M(Z) is a homotopy equivalence for
any Z ∈ Γo

G. (Note that LM. is the bar construction B(Γo
G,Γo

G,M).)
For X a right G-space, consider the simplicial ΓG-space X ⊗G LM..

We have

X ⊗G LMp =
∨

Z0,...,Zp

[
X ⊗G Γo

G(Zp,−)
]
∧Γo

G(Zp−1, Zp)∧ · · · ∧M(Z0)

as a Γ-space, because the tensor construction distributes over wedge
products and commutes with smashing with spaces. However, a straight-
forward calculation yields the formula

[
X ⊗G Γo

G(Y,−)
]
(Z) ∼= FG(Y,X ∧Z),

the space of G-equivariant based functions from Y to X ∧ Z.

PROPOSITION 9. For M a semi-cofibrant ΓG-space and X a G-CW
complex with free action away from the basepoint, the augmentation
map X ⊗G LM. → X ⊗G M is a levelwise weak equivalence of Γ-spaces
after realization; i.e., the map |(X ⊗G LM.)(Z)| → (X ⊗G M)(Z) is a
weak equivalence for all Z ∈ Γo.

Proof. There is a natural isomorphism (X ⊗G M)(Z) ∼= M(X ∧ Z),
so it suffices to prove that |LM.(X)| →M(X) is a weak equivalence for
any G-CW complex X. We will prove this by showing that it is filtered
by weak equivalences.

Suppose X is a G-CW complex. For any n ∈ N, define

M(X)(n) =


 ∐

|Y/G|≤n,Y ∈Γo
G

M(Y )∧F G(Y,X)


 / ∼ .

Here the equivalence relation is the same as that defining M(X).
We now prove that M(X)(n) is a subspace of M(X). Suppose Y ∈

Γo
G, and u∧ v ∈ M(Y )∧ F G(Y,X). Call this element minimal if v is

an embedding and u is not in the image of j∗ for any proper inclusion
j∗.

Given an element u∧ v as above, the map v uniquely factors through
the surjection p : Y → Im(v). By Remark 5, there is a unique minimal
inclusion j : Z ⊂ Im(v) such that p∗u = j∗m for some m. The element
m∧ j is minimal and equivalent to u∧ v. Note that if |Y/G| ≤ n, this
equivalence holds in M(X)(n).

If f : Y ′ → Y , u ∈ M(Y ′), and v : Y → X, then there is a natural
factorization as follows:
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Y ′
f //

����

Y

����

v

""FFFFFF
FFF

Z // // Im(f∗v) // // Im(v) // // X.

This shows that f∗u∧ v and u∧ f ∗v are equivalent to the same minimal
element.

We find that two elements are equivalent under the equivalence re-
lation defining M(X) or M(X)(n) if and only if they are equivalent to a
common minimal element. As a result, an element in M(X)(n) is not in
the image of M(X)(n−1) if and only if it is its own minimal factorization,
i.e. it is of the form u∧ v where v is an embedding and u is not in the
image of j∗ for j any proper inclusion. Two such minimal elements u∧ v
and u′ ∧ v′ are equivalent if and only if there is an isomorphism f such
that f∗u = u′ and (f−1)∗v = v′.

In particular, for any n > 0, there is a natural pushout square for
constructing M(X)(n) from M(X)(n−1). Define Σn oG to be the wreath
product Gn o Σn, which is the automorphism group in Γo

G of G+ ∧ n+.

Let F̃ (n+, X) be the subset of F (n+, X) = F G(G+ ∧ n+, X) consisting
of those maps that are not embeddings, and let M̃(G+ ∧ n+) denote
the union of the images of M(Y ) over proper inclusions Y → G+ ∧ n+.

There is a natural pushout diagram

A //

��

M(X)(n−1)

��
F (n+, X)∧ΣnoG M(G+ ∧ n+) // M(X)(n),

where

A =

(
F̃ (n+, X) ∧

ΣnoG
M(G+ ∧n+)

)
∪

(
FG(Z,X) ∧

Σn oG
M̃ (G+ ∧n+)

)
.

Similarly, there is a natural pushout diagram

B //

��

|LM.(X)|(n−1)

��
F (n+, X)∧ΣnoG |LM.(G+ ∧ n+)| // |LM.(X)|(n),

where B is the corresponding union for LM..
Because X is a free G-CW complex, the map F̃ (n+, X)→ F (n+, X)

is a cofibration of (Σn o G)-spaces. Additionally, the map of (Σn o G)-
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spaces |LM.(G+ ∧ n+)| → M(G+ ∧ n+) is a weak equivalence, so the
square

F̃ (n+, X)∧ΣnoG |LM.(G+ ∧ n+)| //

��

F̃ (n+, X)∧ΣnoG M(G+ ∧ n+)

��
F (n+, X)∧ΣnoG |LM.(G+ ∧ n+)| // F (n+, X)∧ΣnoG M(G+ ∧ n+)

is homotopy cocartesian. Similarly, the weak equivalence |L̃M .| → M̃
shows that the square

F̃ (n+, X)∧ΣnoG

∣∣∣L̃M .(G+ ∧ n+)
∣∣∣ //

��

F̃ (n+, X)∧ΣnoG M̃ (G+ ∧ n+)

��

F (n+, X)∧ΣnoG

∣∣∣L̃M .(G+ ∧ n+)
∣∣∣ // F (n+, X)∧ΣnoG M̃ (G+ ∧ n+)

is homotopy cocartesian.
These two previous homotopy cocartesian squares imply that the

square

B //

��

F (n+, X)∧ΣnoG |LM.(G+ ∧ n+)|

��
A // F (n+, X)∧ΣnoG M(G+ ∧ n+)

is homotopy cocartesian. (This square would be honestly cocartesian
if the previous squares were cocartesian.) The horizontal maps in this
square are cofibrations.

Inductively assume that |LM.(X)|(n−1) → M(X)(n−1) is a weak
equivalence. Weak equivalences are preserved by pushouts along cofi-
brations, so the map

|LM.(X)|(n−1) ∪A

(
F (n+, X) ∧

Σn oG
M(G+ ∧n+)

)
→M(X)(n)

is a weak equivalence. However, we know that there is a weak equiva-
lence

F (n+, X) ∧
Σn oG

M(G+ ∧n+) ' A∪B

(
F (n+, X) ∧

Σn oG
|LM.(G+ ∧n+)|

)
,

so we find that the map |LM.(X)|(n) →M(X)(n) is a weak equivalence,
as desired.
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COROLLARY 10. If M is a semi-cofibrant ΓG-space and a map X →
Y of free G-CW complexes is k-connected, so is the map M(X) →
M(Y ).

Proof. It suffices to show that the map |LM.(X)| → |LM.(Y )| is
k-connected. If k = 0, this is clear.

The simplicial space LM.(X) is good in the sense of Segal [19],
Appendix A, so it suffices to show that the map of thick geometric
realizations ||LM.(X)|| → ||LM.(Y )|| is k-connected. However, this
map of simplicial spaces is levelwise of the form

∨
Z0,...,Zp

FG(Zp, X)∧ Γo
G(Zp−1, Zp)∧ · · · ∧ Γo

G(Z0, Z1)∧M(Z0)

��∨
Z0,...,Zp

FG(Zp, Y )∧ Γo
G(Zp−1, Zp)∧ · · · ∧ Γo

G(Z0, Z1)∧M(Z0).

This map is k-connected because the map F G(Zp, X)→ F G(Zp, Y )
is. The result follows because a levelwise k-connected map of simpli-
cial spaces A. → B. induces a k-connected map of thick geometric
realizations. We include a proof as follows.

Filtering the thick geometric realization by skeleta, we find that for
any n ≥ 1 there is a commutative square

skn−1(||A.||) //

��

skn(||A.||)

��
skn−1(||A.||) // skn(||B.||).

Assume inductively that the leftmost vertical map is k-connected.
We now recall the statement of the Blakers-Massey excision theorem,

as in [7], Section 2. Suppose there is a commutative square of spaces

A
f1 //

f2

��

B

��
C // D.

If the map from the homotopy pushout to D is `-connected, and fi

is ki connected for each i, then the map of of homotopy fibers

fib(A→ C)→ fib(B → D)

is min(k1 + k2 − 1, `− 1)-connected.
Applying this shows that the map from skn−1(||A.||) to skn(||A.||)

is (n−1)-connected, and similarly for ||B.||. Consider the commutative

lawson_productformula_resubmit2.tex; 27/01/2006; 13:27; p.10



11

square of skeleta. Because k ≥ 1, the map from the homotopy pushout
to skn(||B.||) is 1-connected by the Seifert-Van Kampen theorem. By
the relative Hurewicz theorem, the connectivity of this map is the same
as the connectivity of its homotopy cofiber.

The total homotopy cofiber of the square of skeleta is the cofiber of
the map Sn ∧ LMn(X)+ → Sn ∧ LMn(Y )+, which is (n+k)-connected
by assumption. The map of (n − 1)-skeleta is k-connected, and the
map from the (n − 1)-skeleton to the n-skeleton is (n − 1)-connected.
Therefore, the Blakers-Massey theorem shows that the map of homo-
topy fibers is (n + k − 2)-connected. As n ≥ 1, it is in particular
(k− 1)-connected. The homotopy fiber of the map of (n− 1)-skeleta is
(k− 1)-connected, so the homotopy fiber of the map of n-skeleta must
be (k − 1)-connected as well, as desired.

For any ΓG-space M , we have an associated (näıve pre-)spectrum
{M(G+ ∧ Sn)}, which is the spectrum associated to the underlying Γ-
space M(G+ ∧−). A map of ΓG-spaces M → M ′ is called a stable
equivalence if the associated map of spectra is a weak equivalence.

PROPOSITION 11. For any semi-cofibrant ΓG-space M and free based
G-CW complex X, the assembly map X ∧G M(G+ ∧−)→ X ⊗G M is
a stable equivalence.

Proof. It suffices to show that X ∧G M(G+ ∧ Sn) → M(X ∧ Sn)
is highly connected for large n. Using the levelwise weak equivalence
|X ⊗G LM.| → X ⊗G M , it suffices to show that this statement is true
for Γ-spaces of the form Γo

G(Y,−) for Y ∈ Γo
G.

In this case, we have the following diagram:

X ∧G
∨

Y (G+ ∧ Sn) //

��

∨
Y X ∧G(G+ ∧ Sn)

��
X ∧G

∏
Y (G+ ∧ Sn) //

∏
Y (X ∧ Sn)

X ∧G Γo
G(Y,G+ ∧ Sn) // Γo

G(Y,X ∧ Sn).

The top vertical arrows are isomorphisms on homotopy groups up to
roughly dimension 2n, as G+ ∧ Sn is (n−1)-connected. The uppermost
horizontal arrow is an isomorphism. Therefore, the bottom map is
an equivalence on homotopy groups up to roughly dimension 2n, as
desired.
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3. Connective equivariant K-homology

In this section, we construct for each n a ΓPU(n)-space whose underly-
ing spectrum is homotopy equivalent to ku, the connective K-theory
spectrum.

Fix an integer n. For any d ∈ N, we have the Stiefel manifold V (nd)
of isometric embeddings of Cn⊗Cd into C∞, where these vector spaces
have the standard inner products. The tensor product map U(n) ⊗
U(d) → U(nd) gives the space V (nd) a free right action of I ⊗ U(d)
by precomposition, where I is the identity element of U(n). Denote
the quotient space by H(d), and write H =

∐
d H(d). (Note H '∐

d BU(d).) The space H has a partially defined direct sum operation:
if {Vi} is a finite set of elements of H such that Vi ⊥ Vj for i 6= j, there
is a sum element ⊕Vi in H.

There is also an action of U(n) ⊗ I on V (nd) that commutes with
the action of I ⊗ U(d), and hence passes to an action on the quotient
H(d). Because λI ⊗ I = I ⊗ λI, the scalars in U(n) act trivially on
H(d), so the action factors through PU(n). We therefore get a right
action of PU(n) on H. The direct sum operation is PU(n)-equivariant.

For any Z ∈ Γo
PU(n), define

kuPU(n)(Z) =
{

f ∈ FPU(n)(Z,H)
∣∣∣ f(z) ⊥ f(z′) if [z] 6= [z′]

}
.

A point of kuPU(n)(Z) consists of a subspace C∞, isomorphic to Cdimf(z),
associated to each non-basepoint [z] of Z/PU(n), such that the vector
spaces associated to [z] and [z ′] are orthogonal if [z] 6= [z ′].

Given a map α ∈ Γo
PU(n)(Z,Z ′) and f ∈ kuPU(n)(Z), we get an

element kuPU(n)(α)(f) ∈ kuPU(n)(Z ′) as follows:

kuPU(n)(α)(f)(z′) =
⊕

α(z)=z′

f(z).

This direct sum is well-defined: if the preimage of z is the family {zi},
then the zi all lie in distinct orbits because the action of PU(n) is
free away from the basepoint. Therefore, the subspaces associated to
the zi are orthogonal. The map kuPU(n)(α)(f) is also clearly PU(n)-
equivariant, and takes distinct orbits to orthogonal elements of H.

The underlying Γ-space is given as follows. For Z ∈ Γo,

kuPU(n)(PU(n)+ ∧Z) = {f ∈ F (Z,H) |f(z) ⊥ f(z ′) if z 6= z′}.

The spectrum attached to the underlying Γ-space of kuPU(n) is weakly
equivalent to the connective K-theory spectrum ku—see [20].
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The ΓPU(n)-space kuPU(n) is semi-cofibrant: The image in kuPU(n)(Z)

of the spaces kuPU(n)(Y ) for Y ( Z consists of those maps Z → H that
map some nontrivial subset of Z to H(0). This is a union of components
of kuPU(n)(Z).

We also define a second ΓPU(n)-space ku/β as follows. For any z ∈
Γo

PU(n),

ku/β(Z) = Ñ[Z/PU(n)],

where Ñ is the reduced free abelian monoid functor. More explicitly,
ku/β(Z) is the quotient of the free abelian monoid on Z/PU(n) by the
submonoid N[∗]. For α ∈ Γo

PU(n)(Z,Z ′),

ku/β(α)
(∑

nz[z]
)

=
∑

nz[α(z)].

(The reason for the notation is that the underlying spectrum is the
cofiber of the Bott map.) The ΓPU(n)-space ku/β is semi-cofibrant for

the same reason as kuPU(n).
For X a free right PU(n)-space, X ⊗PU(n) ku/β is the infinite sym-

metric product Sym∞(X/PU(n)).
There is a natural map ε : kuPU(n) → ku/β of ΓPU(n)-spaces: if

f ∈ kuPU(n)(Z), define ε(f) =
∑

[z]

(
dim f(z)

n

)
[z]. The map ε represents

the augmentation ku → HZ on the underlying spectra; it is the first
stage of the Postnikov tower for ku.

The ΓPU(n)-space kuPU(n) determines a homology theory for PU(n)-
spaces. Specifically, we can define

ku
PU(n)
∗ (X) = π∗

(
X ⊗PU(n) kuPU(n)

)
.

Here π∗ denotes the stable homotopy groups of the spectrum. In fact,
because the underlying spectrum of kuPU(n) is special, we can compute

ku
PU(n)
∗ (X) = π∗

(
kuPU(n)(X)

)

for X connected. (See [19], 1.4.)

4. Unitary deformation K-theory

In this section we will have a fixed finitely generated discrete group G.
Carlsson, in [2], defined a notion of the “deformation K-theory” of G as
a contravariant functor from groups to spectra, and in the introduction
of this article an analogous notion of “unitary deformation K-theory”
KG was sketched. The following are weakly equivalent definitions of
the corresponding notion of KG:
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− The spectrum associated to the the E∞-H-space

∐

n

EU(n) ×
U(n)

Hom(G,U(n)).

− The K-theory of a category of unitary representations of G. This
category is an internal category in Top: i.e., the objects and mor-
phism sets are both given topologies.

− The K-theory of the singular complex of the category above. (This
is essentially the definition given in [2].)

We will now describe another model for the unitary deformation K-
theory of G, equivalent to the first definition given above. The construc-
tion is based on the construction of connective topological K-homology
of Segal in [20]. (Also see [22].)

Definition 12. Let U = C∞ be the infinite inner product space having
orthonormal basis {ei}

∞
i=0, with action of the group U = colim U(n).

Definition 13. A G-plane V of dimension k is a pair (V, ρ), where V
is a k-dimensional plane in U and ρ : G → U(V ) is an action of G on
V .

We now describe a (non-equivariant) Γ-space KG. Define

KG(X) =
{

(Vx, ρx)x∈X

∣∣∣ Vx a G-plane, Vx ⊥ Vx′ if x 6= x′, V∗ = 0
}

.

This is a special Γ-space. The underlying H-space is

KG(1+) ∼=
∐

n

V (n)×U(n) Hom(G,U(n)),

where V (n) is the Stiefel manifold of n-frames in U . We will now
describe the simplicial space X. = KG(S1). Because KG is special,
Ω|X.| ' Ω∞KG.

For p > 0, Xp is the space

{
(Vi, ρi)

p
i=1

∣∣∣ (Vi, ρi) a G-plane, Vi ⊥ Vj if i 6= j
}

.

(X0 is a point.) Face maps are given by taking sums of orthogonal
G-planes or removing the first or last G-plane. Degeneracy maps are
given by insertion of 0-dimensional G-planes.

The geometric realization of this simplicial space can be explicitly
identified. Let Y be the space of pairs (A, ρ), where A ∈ U and ρ is
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a homomorphism G → U such that ρ(g)A = Aρ(g) for all g ∈ G.
Call two such elements (A, ρ) and (A′, ρ′) equivalent if A = A′ and
ρ, ρ′ agree on all eigenspaces of A corresponding to eigenvalues λ 6= 1.
Write the standard p-simplex ∆p as the set of all 0 ≤ t1 ≤ . . . ≤
tp ≤ 1. Then there is a homeomorphism |X.| → (Y / ∼) given by
sending a point ((Vi, ρi)

p
i=1, 0 ≤ t1 ≤ . . . ≤ tp ≤ 1) of Xp × ∆p to the

pair (A, ρ), where A acts on Vi with eigenvalue e2πiti and by 1 on the
orthogonal complement of ΣVi, while ρ acts on Vi by ρi and acts by
1 on the orthogonal complement of ΣVi. (Here ΣVi is the span of the
set of orthogonal subspaces Vi.) This map is a homeomorphism by the
spectral theorem. (The essential details of this argument are from [9]
and [13].)

We will refer to this space |X.| ∼= (Y / ∼) as E. It is space 1 of the
Ω-spectrum associated to KG, in the sense that Ω∞KG ' ΩE.

This method is applicable to various other categories of representa-
tions of G that we will now examine in detail.

For any n ≥ 0, there is a sub-Γ-space KGn of KG. The space
KGn(X) consists of those elements {(Vx, ρx)}x∈X of KG(X) such that
ρx breaks up into a direct sum of irreducible representations of dimen-
sion less than or equal to n. Each KGn is a special Γ-space.

PROPOSITION 14. The map hocolimKGn → KG is a weak equiva-
lence.

Proof. Clearly KG is the union of the sub-Γ-spaces KGn. For any
based set X, any element {(Vx, ρx)} of KG(X) has a well-defined total
dimension

∑
dimVx, and this dimension is locally constant. Therefore,

KG(X) breaks up as a disjoint union according to total dimension. The
component consisting of elements of total dimension n is completely
contained in the subspace KGN (X) for all N ≥ n. In particular, if x
is any point of KG(X) whose total dimension is n, π∗(KG(X), x) ∼=
π∗(KGN (X), x) for all N ≥ n.

Remark 15. As a result, for X a simplicial set finite in each dimen-
sion (such as a sphere), hocolimKGn(X) can be formed levelwise, and
is levelwise weakly equivalent to KG(X). In particular, the natural
map hocolimKGn(Sk) → KG(Sk) is a weak equivalence for all k, so
the associated spectrum of KG is weakly equivalent to the associated
spectrum of hocolimKGn.

We have infinite loop spaces En = |KGn(S1)|. For any n ∈ N, En is
the subspace of E consisting of pairs (A, ρ) such that ρ is a direct sum
of irreducible representations of G of dimension less than or equal to
n.
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This gives a sequence of inclusions

∗ = E0 ⊂ E1 ⊂ E2 ⊂ . . .

of infinite loop spaces. Each of these inclusions is part of a quasifibration
sequence En−1 → En → Bn where the base spaces will be explicitly
identified. This gives rise to the following “unrolled exact couple” of
infinite loop spaces:

∗ // E1

~~||
||

||
||

// E2

~~||
||

||
||

// E3 . . .

{{wwwwwwww

B1

O???

__????

B2

OBBB

``BBB

B3.

OCCC

aaCCC

Additionally, the inclusions of infinite loop spaces En are induced
by maps of E∞-ku-modules, so the above is induced by an exact couple
of ku-module spectra.

The intuition for the description of Bn is that the category of G-
representations whose irreducible summands have dimension less than
n forms a Serre subcategory of the category of G-representations whose
irreducibles have dimension less than or equal to n, and the quotient
category should be the category of sums of irreducible representations
of dimension exactly n. The topology on the categories involved com-
plicates the question of when a localization sequence of spectra exists in
this situation, as the most obvious attempts to generalize of Quillen’s
Theorem B would not be applicable. We will construct the localization
sequence explicitly.

There is a quotient Γ-space Fn of KGn by the equivalence relation
(Vx, ρx)x∈X ∼ (V ′

x, ρ′x)x∈X if for all x ∈ X:

− The subspace Wx of Vx generated by irreducible subrepresentations
of ρ of dimension n coincides with the corresponding subspace for
ρ′, and

− ρ and ρ′ agree on Wx.

Again, Fn is a special Γ-space.
Define Bn to be the space |Fn(S1)|. Bn is the quotient of En by the

following equivalence relation. We say (A, ρ) ∼ (A′, ρ′) if:

− The subspace W of U generated by irreducible subrepresentations
of ρ of dimension n is the same as the subspace of U generated by
irreducible subrepresentations of ρ′ of dimension n,

− ρ and ρ′ have the same action on W , and
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− A and A′ have the same action on W .

Note that each equivalence class contains a unique pair (A, ρ) such
that ρ acts trivially on the eigenspace of A for 1, and on the com-
plementary subspace ρ is a direct sum of irreducible n-dimensional
representations.

5. Proof of the existence of the localization sequence

The proof that pn : En → Bn is a quasifibration (and hence induces a
long exact sequence on homotopy groups) proceeds inductively using
the following result.

THEOREM 16. (Hardie [8]). Suppose that we have a diagram

Q

λ
��

f∗(E)
hoo //

s

��

E

p

��
Q′ Ag

oo
f

// B.

Here f is a cofibration, p is a fibration, f ∗(E) is the pullback fibra-
tion, and λ is a quasifibration. If h : s−1(a)→ λ−1(ga) is a weak equiv-
alence for all a ∈ A, then the induced map of pushouts Q

∐
f∗(E) E →

Q′
∐

A B is a quasifibration.

PROPOSITION 17. The map pn : En → Bn is a quasifibration with
fiber En−1.

Remark 18. This is what we might expect, as the map En → Bn

is precisely the map that forgets the irreducible subrepresentations of
dimension less than n. The fact that En−1 is the honest fiber over any
point is clear, but we need to show that En−1 is also the homotopy
fiber.

Proof. We will proceed by making use of a rank filtration. These
rank filtrations were introduced in [13] and [16]. In particular, Mitchell
explicitly describes this rank filtration for the connective K-theory
spectrum.

For any j, let Bn,j be the subspace of Bn generated by those pairs
(A, ρ) such that ρ contains at most a sum of j irreducible representa-
tions. There is a sequence of inclusions Bn,j−1 ⊂ Bn,j. Write En,j for
the subset of En lying over Bn,j.
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The map En,0 → Bn,0 is a quasifibration, because Bn,0 is a point.
Now suppose inductively that En,j−1 → Bn,j−1 is a quasifibration.

Let Yj be the space of triples (A, ρ,W ), where W is an nj-dimensional
subspace of U , A is an element of U(W ), and ρ is a representation of
G on W commuting with A and containing irreducible summands of
dimension n or less. Let Xj be the subset of Yj of triples (A, ρ,W ) such
that (A, ρ) represents a pair in Bn,j−1; in other words, ρ contains less
than j distinct n-dimensional irreducible summands on the orthogonal
complement of the eigenspace for 1 of A.

Next, we define a space Y ′
j of triples (A, ρ,W ), where (A, ρ) ∈ Ei,j

and W is an A- and ρ-invariant nj-dimensional subspace of U contain-
ing all the n-dimensional irreducible summands of ρ. There is a map
Y ′

j → Yj given by forgetting the actions of A and ρ off W . Let X ′
j be

the fiber product of Xj and Y ′
j over Yj; it consists of triples (A, ρ,W )

where ρ contains less than j distinct n-dimensional summands.
There is a map Xj → Bj−1 given by sending (A, ρ,W ) to (A, ρ), and

a similar map X ′
j → Ej−1. These maps all assemble into the diagram

below.

En,j−1

pn

��

X ′
j

oo //

��

Y ′
j

p

��
Bn,j−1 Xjoo // Yj

There is an evident map from the pushout of the bottom row to
Bn,j, and similarly a map from the pushout of the top row to En,j.

The map Xj → Bn,j−1 is a quotient map; two points become iden-
tified by forgetting the “framing” subspace W , the non-n-dimensional
summands of ρ, and the summands of ρ on the eigenspace for 1 of A.
For points of Yj not in Xj , the framing subspace W is determined by
the image (A, ρ) in Bj because ρ must have j distinct n-dimensional
irreducible summands covering all of W , and A can have no eigenspace
for the eigenvalue 1. Therefore, the map from Yj to the pushout of
the bottom row is precisely the quotient map gotten by forgetting the
framing W and any non-n-dimensional summands or summands lying
on the eigenspace for 1 of A. This identifies the pushout with Bn,j. In
exactly the same way, the pushout of the top row is En,j. The induced
map of pushouts is the projection map En,j → Bn,j.

The map Xj → Yj is a cofibration because it is the colimit of geomet-
ric realizations of a closed inclusion of real points of algebraic varieties.
(The subspace W is allowed to vary over the infinite Grassmannian. If
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we restrict its image to any finite subspace we get an inclusion of real
algebraic varieties.)

The right-hand square is a pullback by construction, and the map
pn is assumed to be a quasifibration.

The map p is a fiber bundle with fiber En−1: An equivalence class of
points (A, ρ,W ) ∈ Y ′

j consists of a choice of nj-dimensional subspace

W of U , a choice of element in (Ā, ρ̄,W ) in Yj to determine the action
of A and ρ on W , and a choice of (A′, ρ′) acting on the orthogonal
complement of W such that ρ′ is made up of summands of dimension
less than n. In other words, there is a pullback square:

Y ′
j

//

��

V

��
Yj // Gr(nj).

Here Gr(nj) is the Grassmannian of nj-dimensional planes in U , and
V is the bundle over the Grassmannian consisting of nj-dimensional
planes in U and elements of En−1 acting on their orthogonal comple-
ments.

Given any point (A, ρ,W ) of Xj , the fiber in X ′
j is En−1 acting

on the orthogonal complement of W . Suppose that (A, ρ) in Bn,j−1 is
in canonical form: ρ acts by a sum of irreducible dimension n repre-
sentations on some subspace W ′ ⊂ W and trivial representations on
the orthogonal complement, and A has eigenvalue 1 on the orthogonal
complement of W ′. Then the fiber over (A, ρ) in En,j−1 consists of
all possible actions of En−1 on the orthogonal complement of W ′. The
map from the fiber over (A, ρ,W ) to the fiber over (A, ρ) is the inclusion
of En−1 acting on W⊥ to En−1 acting on (W ′)⊥. This inclusion is a
homotopy equivalence.

Therefore, En,j → Bn,j is a quasifibration with fiber En−1. Taking
colimits in j, En → Bn is a quasifibration with fiber En−1.

COROLLARY 19. The maps KGn−1 → KGn → Fn realize to a fibra-
tion sequence in the homotopy category of spectra.

Proof. This follows because the composite map is null, the map from
KGn−1(S

1) to the homotopy fiber of KGn(S1) → Fn(S1) is a weak
equivalence, and all three of these Γ-spaces are special.
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6. Identification of the Γ-space Fn

Using the results of section 2, we will now identify the Γ-spaces Fn as
equivariant smash products.

Let Sum(G, n) be the subspace of Hom(G,U(n)) of reducible G-
representations of dimension n. Define Rn = Hom(G,U(n))/Sum(G, n).
There is a free right action of PU(n) on Rn by conjugation.

Remark 20. The action of PU(n) on Rn is free because the only
endomorphisms of an irreducible complex representation are scalar
multiplications. This fails for orthogonal representations.

According to a result of Park and Suh ([15], Theorem 3.7), the space
Hom(G, U(n)), which is the set of real points of an algebraic variety,
admits the structure of a U(n)-CW complex. All isotropy groups con-
tain the diagonal subgroup, so this structure is actually the structure
of a PU(n)-CW complex. The subspace Sum(G, n) consists of those
elements of Hom(G,U(n)) that are not acted on freely by PU(n),
and so it must be a CW-subcomplex. Therefore, Rn has an induced
CW-structure.

PROPOSITION 21. There is an isomorphism of Γ-spaces

Rn ⊗PU(n) kuPU(n) → Fn.

Proof. By the universal property of the coend

Rn ⊗PU(n) kuPU(n)(Z) =

∫ Y

kuPU(n)(Y )∧F G(Y,Rn ∧Z),

we can construct the map by exhibiting maps

kuPU(n)(Y )∧F G(Y,Rn ∧Z)→ Fn(Z),

natural in Z, that satisfy appropriate compatibility relations in Y .
Recall that a point of kuPU(n)(Y ) consists of an equivariant map

f : Y → H =
∐

V (nd)/I ⊗U(d) such that f(y) ⊥ f(y′) if y 6= y′.
Suppose f ∧ h ∈ kuPU(n)(Y )∧ F G(Y,Rn ∧ Z). For every y ∈ Y the

element h(y) = r(y)∧ z(y) determines an irreducible action r(y) of G
on Cn. The element f(y) ∈ V (nd)/I⊗U(d) is the image of some element

f̃(y) ∈ V (nd), which determines an isometric embedding Cn ⊗ Cd →
U . Combining these two gives an action of G on an nd-plane of U ,
together with a marking z(y) of the plane by an element of Z. The
action of I ⊗ U(d) commutes with the G-action on Cn ⊗ Cd, so the
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choice of lift f̃(y) does not change the resulting G-plane. For g ∈ G,
r(yg) = r(y) · g = g−1r(y)g, and f(yg) = (g−1 ⊗ I)f(y)(g ⊗ I), so
the resulting plane only depends on the orbit yG. The resulting G-
plane breaks up into irreducible summands of dimension precisely n.
Assembling these G-planes over the distinct orbits gives a collection
of orthogonal hyperplanes with G-actions, marked by points of Z, that
break up into a direct sum of n-dimensional irreducible representations.
As r(y) approaches the basepoint of Rn, the representation becomes
reducible, so the map determines a well-defined element of Fn(Z). The
compatibility of this map with maps in Y is due to the fact that it
preserves direct sums.

This map is bijective; associated to any point of Fn(Z) there is a
unique equivalence class of points that map to it.

We now construct the inverse map Fn → Rn ⊗PU(n) kuPU(n). As Fn

is a quotient of KGn, it suffices to construct a map

KGn(Z)→ Rn ⊗PU(n) kuPU(n)(Z),

natural in Z, that respects the equivalence relation.
For d ∈ N, consider the space Xd of pairs (ρ, {ei}) consisting of an

action ρ of G on Cd, together with a set of nonzero mutually orthogonal
G-equivariant projection operators ei whose image each have dimension
n and that contain all of the n-dimension summands of Cd. This space
is compact Hausdorff. The forgetful map to Hom(G,U(d)) identifies the
image subspace X ′

d, consisting of elements ρ that are a direct sum of
representations of dimension n or less, with the quotient of Xd by the
equivalence relation gotten by forgetting the ei.

Recall that V (d) is the space of embeddings of Cd in U . We now
define a natural map

φ : V (d) × Xd →∨

m

kuPU(n)(PU(n)+ ∧m+)∧FPU(n)(PU(n)+ ∧m+, Rn).

Given an isometric embedding f , an action ρ of G on Cd, and a col-
lection of m G-planes of Cd, we use the isometric embedding to obtain
a collection {f(Im ei)} of n-planes in U , marked by points of Rn.
Composing with the quotient map, we get a map

φ′ : V (d)×Xd → Rn ⊗PU(n) kuPU(n)(1+).

The image of a point depends only on the n-dimensional summands of
the representation ρ.

The map φ′ is invariant under the choice of direct sum decomposition
{ei}, so there is an induced map φ′′ from the quotient space V (d) ×
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X ′
d. (This identification of the quotient space requires that we use the

product in the category of compactly generated spaces.) The map φ′′

is invariant under the diagonal action of U(d) on V (d)×X ′
d, so there is

an induced map V (d)×U(d) X ′
d → Rn ⊗PU(n) kuPU(n)(1+). Assembling

these together over d gives a map KGn(1+)→ Rn⊗PU(n) kuPU(n)(1+).
The map

Rn ⊗PU(n) kuPU(n)(Z)→
∏

Z

Rn ⊗PU(n) kuPU(n)(1+)

is an inclusion of the subspace of mutually orthogonal elements. The
composite

KGn(Z)→
∏

Z

KGn(1+)→
∏

Z

Rn ⊗PU(n) kuPU(n)(1+)

maps into this subspace. Therefore, this gives a lift to a map of Γ-spaces
KGn → Rn ⊗PU(n) kuPU(n).

This map respects the equivalence relation defining Fn, as the image
of a point of KGn only depended on its n-dimensional summands.

COROLLARY 22. There is a stable equivalence of Γ-spaces

Rn ∧
PU(n)

kuPU(n) → Fn.

Proof. This follows from Proposition 11.

7. E∞-algebra and module structures

In this section we will make explicit the following. The tensor product
of representations leads to the following multiplicative structures:

− ku is an E∞-ring spectrum,

− KG is an E∞-algebra over ku,

− the sequence of maps KG1 → KG2 → · · · → KG is a sequence of
E∞-ku-module maps,

− there are compatible E∞-ku-linear pairings KGn ∧KGm → KGnm

for all n,m, and

− the assembly map Rn ∧PU(n) kuPU(n) → KGn is a map of E∞-ku-
modules.
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All of the above structures are natural in G.
To begin, we will first recall the definition of a multicategory . A

multicategory is an “operad with several objects”, as follows. See [6].

Definition 23. A multicategory M consists of the following data:

− a class of objects Ob(M),

− a set Mk(a1, . . . , ak; b) for each a1, . . . , ak, b ∈ Ob(M), k ≥ 0 of
“k-morphisms” from (a1, . . . , ak) to b,

− a right action of the symmetric group Σk on the class of all k-
morphisms such that σ∗ maps the set Mk(a1, . . . , ak; b) to the set
Mk(aσ(1), . . . , aσ(k); b),

− an “identity” map 1a ∈M1(a; a) for all a ∈ Ob(M), and

− a “composition” map

Mn(b1, . . . , bn; c) ×Mk1
(a11, . . . , a1k1

; b1)× · · ·

→Mk1+···+kn
(a11, . . . , ankn

; c)

which is associative, unital, and respects the symmetric group
action.

We will not make precise these last properties; they are essentially
the same as the definitions for an operad. A map between multicate-
gories that preserves the appropriate structure will be referred to as a
multifunctor.

Example 24. Any symmetric monoidal category (C,�) is a multicat-
egory, with

Ck(a1, . . . , ak; b) = C(a1� · · ·�ak, b).

For example, the categories of Γ-spaces or symmetric spectra under ∧
are multicategories.

There is a (lax) symmetric monoidal functor U from Γ-spaces to
symmetric spectra [12]. This is a multifunctor from the multicategory
of Γ-spaces to the multicategory of symmetric spectra.

Remark 25. The smash product of Γ-spaces of simplicial sets is de-
fined using left Kan extension. As a result, we can equivalently define
a multicategory structure on Γ-spaces without reference to the smash
product by declaring the set of k-morphisms from (M1, . . . ,Mk) to N
to be the set of collections of maps

M1(Y1)∧ · · · ∧Mk(Yk)→ N(Y1 ∧ · · · ∧Yk),

natural in Y1, . . . , Yk.
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We will now define multicategories M, A, and P, enriched over topo-
logical spaces, as parameter multicategories for E∞-modules, algebras,
and pairings. Let E(n) be the space of linear isometric embeddings of
U⊗n in U . Together the E(n) form an E∞-operad.

Definition 26. The multicategory M has objects R and M , such that
Mk(B1, . . . , Bk;C) is equal to E(k) in the following cases:

− Bj = C = R for all j, or

− Bi = C = M for some i, and Bj = R for all j 6= i.

Otherwise, Mk(B1, . . . , Bk;C) = ∅. Composition is given by the com-
position in E .

Definition 27. The multicategory A has objects R and A, such that
Ak(B1, . . . , Bk;C) is equal to E(k) in the following cases:

− Bj = C = R for all j, or

− C = A.

Otherwise, Ak(B1, . . . , Bk;C) = ∅. Composition is given by composi-
tion in E .

Definition 28. The multicategory P has objects R, M , and N , and
P , such that Pk(B1, . . . , Bk;C) is equal to E(k) in the following cases:

− Bj = C = R for all j,

− Bi = C = M for some i, and Bj = R for all i 6= j,

− Bi = C = N for some i, and Bj = R for all i 6= j,

− Bi = C = P for some i, and Bj = R for all i 6= j, or

− Bi = N , Bi′ = M , C = P , and Bj = R for all j 6= i, i′.

Otherwise, Pk(B1, . . . , Bk;C) = ∅. Composition is given by composi-
tion in E .

There are multifunctors j : M → A and k : P → A with j(R) =
k(r) = R, j(M) = k(M) = k(N) = k(P ) = A. Similarly, there are
multifunctors i1, i2, h : M→ P that send R to R and such that i1(M) =
M , i2(M) = N , and h(M) = P . These induce restriction maps on
multifunctors out to other categories; for instance, j∗ restricts E∞-
algebras to their underlying modules.

Additionally, all three of these multicategories have a common sub-
category R with a single object R. Write η for the embedding of R in
any of these multicategories.
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PROPOSITION 29. Associated to a group G, there is a collection of
multifunctors as follows:

− r : R→ Γ-spaces,

− m : M→ Γ-spaces,

− mn,Kn, Tn, Sn : M→ Γ-spaces for n ∈ N,

− K : A→ Γ-spaces, and

− Pn,m : P→ Γ-spaces for n,m ∈ N.

These multifunctors are continuous with respect to the enrichment in
spaces, and satisfy the following properties:

− r(R) = ku,

− η∗(F ) = r for any multifunctor F on the above list,

− m(M) = ku, mn(M) = L(n)+ ∧ ku, where L(n) is the space of
isometries Cn ⊗ U → U ,

− K(A) = KG, Kn(M) = KGn,

− Tn(M) = Rn ⊗PU(n) kuPU(n), Sn(M) is the underlying Γ-space

of kuPU(n), and

− i∗1(Pn,m) = Kn, i∗2(Pn,m) = Km, h∗(Pn,m) = Knm.

There are weak equivalences m ← mn → Sn for each n, and natural
transformations K1 → K2 → . . . → j∗K that realize the inclusions
of KGn into KG. Similarly, there are natural transformations Pn,m →
Pn′,m′ for n ≤ n′,m ≤ m′ and Pn,m → k∗K, which all commute, and
applying i∗1, j∗1 , or h∗ yields a family of natural transformations that
realize the above inclusions.

Additionally, there are natural transformations Kn → Tn that re-
alize the quotient map KGn → Rn ⊗PU(n) kuPU(n). The group PU(n)
acts continuously on Sn, and there are PU(n)-equivariant maps from
Rn to the set of natural transformations Nat(Sn, Tn). The adjoints of
these maps realize the assembly maps Rn ∧PU(n) kuPU(n) → Rn ⊗PU(n)

kuPU(n).
A map G → G′ induces a natural transformation of multifunctors

in the opposite direction.
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Proof. Write KGV for the Γ-space KG indexed on the universe V.
For groups G1, . . . ,Gk, there is a well-defined exterior tensor product
of representations:

K(G1)
U1(Z1)∧ · · · ∧K(Gk)Uk(Zk)→ K(G1×· · ·×Gk)

⊗iUi(Z1 ∧ · · · ∧Zk).

This tensor product is coherently commutative and associative with re-
spect to the underlying coherently commutative and associative tensor
product on inner product spaces. It is natural in the Zi, and comes
from a natural map of Γ-spaces

K(G1)
U1 ∧ · · · ∧K(Gk)Uk → K(G1 × · · · ×Gk)

⊗iUi .

The tensor product induces coherent pairings

K(G1)
U1

n1
∧ · · · ∧K(Gk)Uk

nk
→ K(G1 × · · · ×Gk)

⊗iUi
n1···nk

.

Now restrict to the case when Ui = U for all i. Post-composition with
linear isometric embeddings U⊗k → U then gives maps of Γ-spaces

E(k)+ ∧K(G1)n1
∧ · · · ∧K(Gk)nk

→ K(G1 × · · · ×Gk)n1···nk
.

If all Gi are equal to G or the trivial group, we can pull back along the
diagonal map to get a map

E(k)+ ∧B1 ∧ · · · ∧Bk → C,

where the Bi and C are all of the form KG, KGn, or ku. These maps
have continuous adjoints that define the multifunctors r, m, K, Kn,
and Pn,m. The multifunctors mn are formed by smashing m with the
spaces L(n)+; projection from L(n)+ → S0 gives the weak equivalence
mn → m.

Similarly, the underlying Γ-space of kuPU(n) admits an exterior ten-
sor product. A point of kuPU(n)(PU(n)+ ∧Z) is a map

f : Z →
∐

V U(nd)/I ⊗ U(d),

where V U (nd) is the Stiefel manifold of nd-frames in U , such that
f(z) ⊥ f(z′) if z 6= z′. The tensor product of frames induces a map

[
V U(nd)/I ⊗ U(d)

]
∧
[
V V(k)/U(k)

]
→ V U⊗V(ndk)/I ⊗ U(dk).

This product is coherently commutative and associative with respect
to the tensor product on universes. Just as with KG, post-composition
with linear isometries gives maps

E(k)+ ∧ ku∧ · · · ∧ kuPU(n) ∧ ku∧ · · · ∧ ku→ kuPU(n),
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giving the desired multifunctor Sn. These pairings are clearly PU(n)-
equivariant, hence PU(n) acts on the functor Sn.

Tensoring with Cn and precomposing with an isometry Cn⊗U → U
gives a weak equivalence

L(n)+ ∧V U (d)/U(d) → V U (nd)/U(nd).

This commutes with the exterior tensor product, and so defines a
natural weak equivalence of multifunctors mn → Sn.

To define the multifunctor Tn, one can either go through the same
argument with Rn⊗PU(n) kuPU(n) or recall that it is isomorphic to the
Γ-space Fn. Fn is a quotient of KGn by an equivalence relation that is
respected by tensor product with trivial representations. The natural
map KGn → Fn yields a natural transformation of multifunctors.

The only remaining issue is to check that the assembly map is a map
of E∞-ku-modules. For this, it suffices to note that the assembly map
commutes with the exterior tensor pairing

(kuPU(n))U (PU(n)+ ∧Y )∧ kuV(Z)→ kuU⊗V(PU(n)+ ∧Y ∧Z)

for Y,Z ∈ Γo, U and V universes.

We now prove the following rigidification result. Recall from Exam-
ple 24 that U is the functor which takes a Γ-space to the associated
(topological) symmetric spectrum.

PROPOSITION 30. There is a commutative ring object in symmetric
spectra kur with module spectra kuPU(n),r, and contravariant functors
K(−)r

n, K(−)r from finitely generated discrete groups to connective kur-
module symmetric spectra with the following properties:

− there are isomorphisms in the stable homotopy category of sym-
metric spectra F r ∼= Sing U(F ), where F is one of ku, kuPU(n),
K(−), or K(−)n,

− as a kur-module, kuPU(n),r is weakly equivalent to kur,

− there are kur-module maps KGr
1 → KGr

2 → · · · → KGr
∞, and

KGr is weakly equivalent to the homotopy colimit,

− there are strictly commutative and associative kur-module pair-
ings KGr

n ∧kuKGr
m → KGr

nm that commute with the above maps,

− for any n, kuPU(n),r is acted on by Sing PU(n), and the homotopy
cofiber of the map KGr

n−1 → KGr
n is a kur-module equivalent to

the derived smash product Sing Rn ∧Sing PU(n) kuPU(n),r.

lawson_productformula_resubmit2.tex; 27/01/2006; 13:27; p.27



28

All of the above are natural in G.
Proof. The multifunctors constructed in Proposition 29 are mul-

tifunctors of categories enriched in topological spaces. Given such a
multifunctor g : C → Γ-spaces, the composite functor U ◦ g takes
values in topological symmetric spectra. Similarly, the singular complex
functor Sing is a Quillen equivalence that is lax symmetric monoidal
with respect to the smash product ∧, so there is a simplicial multifunc-
tor Sing(U ◦ g) from SingC to symmetric spectra. Additionally, there
is a simplicial multifunctor π from SingC to the constant simplicial
multicategory π0C. π is a weak equivalence.

In [6], a simplicial closed model structure is constructed on the cat-
egory of simplicial multifunctors from a simplicial multicategory D to
S, the category of symmetric spectra. In particular, Theorem 1.4 of [6]
proves that if f : D → D′ is a simplicial multifunctor, the restriction
map f∗ : SD

′

→ SD has a left adjoint f∗, and if f is a weak equivalence
then this adjoint pair is a Quillen equivalence.

Let Lπ∗ denote the total left derived functor of π∗, which consists
of cofibrant resolution followed by π∗. We obtain a rigidified symmetric
spectrum Rig(g) = Lπ∗ Sing(U◦ g) such that π∗Rig(g) is isomorphic to
Sing(U ◦ g) in the homotopy category of multifunctors π0(C)→ S.

Additionally, in our case the multicategory C accepts a “unit” map
η from the multicategory R such that η∗g = r. Let g̃ → Sing(U ◦ g)
be a cofibrant replacement (an acyclic fibration where g̃ is a cofibrant
object) and similarly r̃ → Sing(U ◦ r). The map η∗ preserves weak
equivalences and fibrations, so the map η∗g̃ → η∗ Sing(U ◦ g) is an
acyclic fibration. The isomorphism r → η∗g therefore lifts to a weak
equivalence r̃ → η∗g̃.

Composing the weak equivalences

r̃ → η∗g̃ → η∗π∗π∗g̃ → π∗η∗π∗g̃,

we get an adjoint weak equivalence π∗r̃ → η∗π∗g̃. Both objects are
strictly commutative ring symmetric spectra weakly equivalent to the
object Sing(U ◦ r). In other words, there is a natural weak equivalence
η′ : Rig(r)→ η∗Rig(g).

Define kur = Rig(r)(R), KGr
n = Rig(Kn)(M), KGr = Rig(K)(A),

and kuPU(n),r = Rig(Sn)(M). The unit maps η′ make all of these
objects and maps between them maps of kur-modules. The existence
of algebra structures and pairings of modules are restatements of the
multicategory structures on these modules.

The weak equivalence of kur with kuPU(n),r follows from the weak
equivalences of multifunctors m← mn → Sn.
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The weak equivalence between KGr and the homotopy colimit of
the sequence KGr

n follows from Proposition 14, as we have KGr
n '

Sing UKGn and KG ' Sing UKG ' Sing U(hocolimKGn).
The homotopy cofiber sequence

Sing UKGn−1 → Sing UKGn → Sing UFn

is weakly equivalent to the sequence of maps

KGr
n−1 → KGr

n → Rig(Tn)(M)

in the category of kur-module symmetric spectra; we now prove that
this last space is weakly equivalent to an equivariant smash product.

The kur-module Rn ∧PU(n) Sn(M) is weakly equivalent to the geo-
metric realization of the bar construction B(Rn,PU(n)+, Sn(M)) be-
cause Rn is a free PU(n)-CW complex. The structure map X ∧UN →
U(X ∧N) for a space X and a Γ-space N is an isomorphism, and
similarly Sing(X ∧E) → Sing(X)∧ Sing(E) is a weak equivalence for
a CW -complex X and a topological symmetric spectrum E. There-
fore, both of these functors preserve this bar construction up to weak
equivalence. The result is that there is a weak equivalence of symmetric
spectra

Sing U

(
Rn ∧

PU(n)
Sn(M)

)
→ Sing(Rn) ∧

Sing PU(n)
Sing USn(M), (2)

where this latter smash product is taken in the derived sense.
The continuous PU(n)-equivariant map Rn → Nat(Sn, Tn) induces a

Sing PU(n)-equivariant map Sing Rn → F (Rig(Sn)(M),Rig(Tn)(M)).
There is an adjoint map

Sing Rn ∧
Sing PU(n)

Rig(Sn)(M)→ Rig(Tn)(M),

where the smash product is taken in the derived category. This is weakly
equivalent to the map

Sing Rn ∧
Sing PU(n)

Sing USn(M)→ Sing UTn(M).

Using the weak equivalence of Equation 2, this is weakly equivalent to
the map

Sing U

(
Rn ∧

PU(n)
Sn(M)

)
→ Sing UTn(M).

The map Rn ∧PU(n) Sn(M) → Tn(M) is a weak equivalence by Corol-

lary 22. Therefore, the map Sing Rn ∧Sing PU(n) kuPU(n),r → Rig(Tn)(M)
is a weak equivalence of kur-modules.
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8. The exact couple for KG

There is the following chain of weak equivalences of symmetric spectra.
Here the smash products are taken in the derived category to assure
associativity.

HZ ∧
kur

(
Sing Rn ∧

Sing PU(n)
kuPU(n),r

)
' Sing Rn ∧

Sing PU(n)
HZ

' HZ∧(Rn/PU(n)).

Define QIrr(G, n) = Rn/PU(n). QIrr(G, n) is the quotient space
of isomorphism classes of representations G of dimension n modulo
decomposable representations. (The notation is to avoid confusion with
the standard notation for the subspace of isomorphism classes of irre-
ducible representations.)

Proposition 30 identifies the following homotopy cofiber sequences.
The homotopy colimit of the top row is weakly equivalent to KGr.

∗ // KGr
1

��

// KGr
2

��

// . . .

Sing R1 ∧ kur Sing R2 ∧Sing PU(2) kuPU(2),r

Using the weak equivalence KGr ' Sing(UKG), the following spec-
tral sequence results.

THEOREM 31. There exists a convergent right-half-plane spectral se-
quence of the form

Ep,q
1 = ku

PU(n)
q−p+1(Rp−1)⇒ πp+q(KG).

Remark 32. This uses a Serre indexing convention, so that dr maps
Ep,q

r to Ep−r,q+r−1
r . We should remark that by the homotopy group

πn of a symmetric spectrum X, we mean the set [Sn, X] in the stable
homotopy category, or equivalently the stable homotopy groups of an
Ω-spectrum weakly equivalent to X. The symmetric spectra KG and
KGn are almost Ω-spectra, and so in this case the notion coincides with
the classical notion of stable homotopy groups.

Smashing the previous diagram over kur with HZ (with smash prod-
uct taken in the derived category of kur-modules) yields the follow-
ing. The homotopy colimit of the top row is weakly equivalent to
HZ∧kur KGr.
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∗ // HZ∧kur KGr
1

��

// HZ∧kur KGr
2

��

// HZ∧kur KGr
3 . . .

��
HZ∧QIrr(G, 1) HZ∧QIrr(G, 2) HZ∧QIrr(G, 3)

Again, the diagram results in a spectral sequence.

THEOREM 33. There exists a convergent right-half-plane spectral se-
quence of the form

Ep,q
1 = Hq−p+1(QIrr(G, p− 1))⇒ πp+q(HZ ∧

kur
KG).

Example 34. When G is finite or nilpotent, the cofiber sequences are
all split. When G is finite, this is clear. When G is nilpotent, results
of [10] show that the space of irreducible representations of dimen-
sion n is closed in Hom(G,U(n)), which provides the desired splitting
Rn ∧PU(n) kuPU(n) → KGn.

As a result, for these groups we have a weak equivalence

KG '
∨(

Rn ∧
PU(n)

kuPU(n)

)
.

In this case, the spectral sequence of Theorem 33 degenerates at the
E1 page. For example, consider the integer Heisenberg group of 3 × 3
strict upper triangular matrices with integer entries. The structure of
the space of all irreducible representations appears in [14].

The E1 = E∞ page of the spectral sequence of Theorem 33 looks,
in part, as follows:

Z

Z

Z

Z

Z2

Z2

Z2

Z2

Z2

Z

Z

Z

Z

Z

Z

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

...

...

· · ·

Example 35. Suppose G is free on k generators. As mentioned in the
introduction, there is a weak equivalence KG ' ku ∨ (∨kΣku).
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When G is free on two generators, explicit computations with the
spectral sequence of Theorem 33 give the following picture of the E1

page.

0 0

0 0 ?

Z 0 ? ?

Z2 0 ? ?

Z Z ? ?

0 Z2 ? ?

0 Z ? ?

0 0 ? ?

oo

...

...

· · ·

The differential d1 : E1,2
1 → E0,2

1 is an isomorphism. The terms Ep,q
1

are zero on the set {p > 0, p+q < 2}, and also on the set {q > p2+p+2}.
The terms where q = p2 + p + 2 are all isomorphic to Z.

This spectral sequence converges to Z in dimension 0, Z2 in dimen-
sion 1, and 0 in all other dimensions. The classes in E0,0

1 and E0,1
1 are

precisely those classes that survive to the E∞ term.

9. Proof of the product formula

In this section we will prove Theorem 1, the product formula for defor-
mation K-theory spectra.

The proof requires the following lemmas.

LEMMA 36. A map M ′ → M of connective kur-module spectra is a
weak equivalence if and only if the map HZ∧kur M ′ → HZ∧kur M is a
weak equivalence. (Smash products are taken in the derived category.)

Proof. By taking cofibers, it suffices to prove the equivalent state-
ment that a connective kur-module spectrum M ′′ is weakly contractible
if and only if HZ∧kur M ′′ ' ∗.

However, smashing M ′′ with the homotopy cofiber sequence Σ2kur →
kur → HZ of kur-module spectra shows that HZ∧kur M ′′ ' ∗ if and
only if the Bott map β : Σ2M ′′ →M ′′ is a weak equivalence. This would
imply that the homotopy groups of M ′′ are periodic; M ′′ is connective,
so the result follows.
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LEMMA 37. Irreducible unitary representations of G×H are precisely
of the form V ⊗W for V,W irreducible unitary representations of G
and H respectively.

Proof. That the tensor product of irreducible group representations
is irreducible, and conversely irreducible representations of G × H are
tensor products, is well known. (See, for example, [21] Section 4.4,
Theorem 6 and the comment afterwards.)

Suppose V and W are nontrivial irreducible representations of G and
H respectively. Clearly invariant inner products on V and W induce
one on V ⊗ W . Conversely, if W is nonzero V appears as a sub-G-
representation of V ⊗ W , and hence an invariant inner product on
V ⊗ W induces one on the subspace V . Therefore, V ⊗ W admits a
unitary structure if and only if both V and W do.

Remark 38. Lemma 37 fails when we consider representations of the
group G×H in other groups such as orthogonal groups and symmetric
groups.

Proof. [of Theorem 1] The proof consists of constructing a filtration
of the spectrum KGr ∧kur KHr that agrees with the existing filtration
on K(G×H)r.

We apply the results of Proposition 30 to get a map of kur-algebras

KGr ∧
kur
KHr → K(G ×H)r ∧

kur
K(G ×H)r → K(G×H)r.

Similarly, whenever p · q ≤ n there is a corresponding map of kur-
modules

KGr
p ∧

kur
KHr

q → K(G ×H)r
n.

This diagram is natural in p, q, and n.
Let Γ denote a cofibrant replacement functor for kur-modules. If we

define new kur-module spectra Mn = hocolimp·q≤n ΓKGr
p ∧kur ΓKHr

q,
then there are induced ku-module maps

fn : Mn → K(G ×H)r
n.

The maps (hocolimKGr
p) → KGr and (hocolimKHr

q) → KHr are
weak equivalences, so there is a weak equivalence

hocolim Mn ' hocolim
p,q

ΓKGr
p ∧

kur
ΓKHr

q ' ΓKGr ∧
ku

ΓKHr.

Therefore, it suffices to show Mn → K(G × H)r
n is a weak equivalence

for all n. We have an induced map of homotopy cofiber sequences:
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Mn−1
//

fn−1

��

Mn
//

fn

��

Mn/Mn−1

gn

��
K(G ×H)r

n−1
// K(G ×H)r

n
// Rn(G×H)∧PU(n) kuPU(n),r.

To prove the theorem it suffices to show that the map gn is a weak
equivalence for all n.

The spectra Mn/Mn−1 and Rn(G×H)∧PU(n) kuPU(n),r are connec-
tive kur-module spectra. Applying Lemma 36, it suffices to prove that
the map HZ∧kur gn is a weak equivalence.

Because the map Mn−1 →Mn is a map from the homotopy colimit
of a subdiagram into the full diagram, we can explicitly compute the ho-
motopy cofiber of this map. The homotopy cofiber is weakly equivalent
to the wedge

∨

p·q=n

(
ΓKGr

p/ΓKGr
p−1

)
∧

kur

(
ΓKHr

q/ΓKHr
q−1

)
.

To see this, one notes that we can take the homotopy colimit by re-
placing the diagram by a homotopy equivalent diagram made up of
cofibrations, and then take the take the ordinary colimit. For any such
diagram {Fp,q}, we clearly have


 ⋃

p·q≤n

Fp,q



/( ⋃

p·q<n

Fp,q

)
=
∨

p·q=n

Fp,q/
(
Fp−1,q ∪Fp−1,q−1

Fp,q−1

)
.

The “pushout product axiom” [18] shows that in the case where Fp,q '
Ap ∧Bq and the maps Ap−1 → Ap and Bp−1 → Bp are cofibrations, we
have

Fp,q/
(
Fp−1,q ∪Fp−1,q−1

Fp,q−1

)
' Ap/Ap−1 ∧

kur
Bq/Bq−1.

The spectra KGr
p/KGr

p−1, and the corresponding spectra for H, are
weakly equivalent to those that were identified as equivariant smash
product spectra in Corollary 19 and Proposition 21. Smashing over
kur with HZ gives us the following identity.

HZ ∧
kur

Mn/Mn−1 '
∨

p·q=n

(
HZ∧QIrr(G, p)

)
∧
HZ

(
HZ∧QIrr(H, q)

)

' HZ∧

(
∨

p·q=n

QIrr(G, p)∧QIrr(H, q)

)
.
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The map HZ∧ku gn can be identified with the map

HZ∧
(
∨p·q=n QIrr(G, p)∧QIrr(H, q)

)
→ HZ∧QIrr(G×H, n)

that is induced by the tensor product of representations. The tensor
product map ⊗ : ∨p·q=n QIrr(G, p)∧QIrr(H, q) → QIrr(G × H, n) is a
continuous map between compact Hausdorff spaces. It is bijective by
Lemma 37. Therefore, it is a homeomorphism.
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