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Abstract

We use a “twisted group algebra” method to constructively adjoin formal
radicals n√α , for α a unit in a commutative ring spectrum or an invertible object
in a symmetric monoidal∞-category. We show that this construction is classi�ed
by maps from Eilenberg–Mac Lane objects to the unit spectrum gl1, the Picard
spectrum pic, and the Brauer spectrum br.

Given a commutative ring R and an element α ∈ R, we can adjoin a formal radical
n
√
α to R by embedding R into the extension ring R[x]/(xn − α ). These ring extensions

come equipped with a ready-made basis {1,x , . . . ,xn−1} over R and are fundamental
constructions in algebra. In the derived setting, however, it is less clear when these
types of constructions are possible. Given a commutative ring spectrum R and an
element in α ∈ π0R, one can construct a commutative R-algebra with an n’th root of α
using the same type of presentation in terms of generators and relations. However,
away from characteristic zero the universal property enjoyed by this construction is
not as strong and its coe�cient ring can be unpredictable.

We can try instead to lift the algebra directly by constructing a commutative R-
algebra S with a map R → S such that, on coe�cient rings, we have the algebraic
extension: π∗S � (π∗R)[x]/(xn − α ). Depending on α , such an extension may not be
possible or may not be unique. It is always possible to adjoin roots of 1, because those
algebras are realized by the group algebras R[Cn] of �nite cyclic groups. If both α
and n are units in π0R then the resulting extension on coe�cient rings is étale, and
the obstruction theory of Robinson [Rob03] or Goerss–Hopkins [GH04] can be used
to show that the extension ring S exists, is essentially unique, and has a universal
property among R-algebras with such a root adjoined. If 1/2 is inverted, this means
that we can adjoint

√
−1. However, Schwänzl–Vogt–Waldhausen showed in [SVW99],

using topological Hochschild homology, that it is impossible to adjoint a square root
of −1 to the sphere spectrum. A di�erent argument of Hopkins with K (1)-local power
operations shows that the p-complete K-theory spectrum cannot admit p’th roots of
unity [LN14, A.6.iii], and this was further generalized by Devalapurkar to K (n)-local
theory [Dev17]. Further di�culties appear when attempting to adjoin a root that
appears in a nonzero degree.

Our starting observation is that these formal radicals are a special case of twisted
group algebras. Given an abelian group extension 0 → G → E → A → 0 and a
group homomorphism G → R×, we can form the relative tensor product Z[E] ⊗Z[G] R.
The elements of A lift to a basis over R, and the resulting algebra di�ers from the
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group algebra R[A] by this central extension. Moveover, all such extensions can be
constructed in a universal case by pushing forward the extension from G to R×.

We will begin by showing that, when it is possible to construct similar extensions
of the spectrum of units gl1 (R), we can give systematic constructions of formal radicals
and other twisted group algebras, and obstructions are detectable with su�cient
knowledge of gl1 (R). By then reinterpreting these constructions as Thom spectra for
maps to pic(R), we can use recent work of Antolín-Camarena–Barthel [AB14] to both
generalize this and allow us to identify these algebras as having a universal property.
This recovers several constructions: adjoining n’th roots of elements to a ring spectrum
where n is invertible, usually carried out using obstruction thery, and adjoining similar
roots to elements in gradings outside zero. There are also new constructions: we �nd
that we can extend the �rst Postnikov stage τ≤1S(2) of the 2-local sphere by adjoining
√
D for D ≡ 1 mod 4.

Once we have accomplished this, our second goal will be to dig one categorical
level down.

The same methods can be applied to adjoin formal radicals of elements in the
Picard group. This allows us to take an extension of the Picard spectrum pic(R) and
use it to embed the category of R-modules into a graded category with a larger group
of invertible objects. This formalism recovers algebraic examples, such as Rezk’s ω-
twisted tensor product for Z/2-graded modules [Rez09]. There are also new topological
examples: if R is an MU -algebra we can embed the category LModR of R-modules,
where integer suspensions are possible, into a larger category

∏
Q/Z LModR with a

symmetric monoidal structure that allows suspensions by elements of Q × Z/2. This is
also possible for modules over the topological K-theory spectrum ku and the algebraic
K-theory spectrum KC. Although our focus is on ring spectra, many of the results are
proved in the generality of presentable symmetric monoidal∞-categories.

Further directions
A �rst issue is that our discussion of adjoining roots is less satisfying for units outside
degree zero. In particular, the identi�cation of such units is somewhat roundabout.
Ideally a solution to this problem would make use of a spectrum of graded units similar
to those developed by Sagave [Sag16], and in particular his construction of bgl∗1R.

Second, we restrict our attention to strictly commutative objects (meaning E∞-ring
objects). The constructions in this paper should have interesting and useful En-variants,
making use of the iterated classifying spaces B (n)GL1R.

Finally, we study unit groups because they are more easily analyzed via their
associated spectrum. This means that we lose any ability to extract formal radicals of
nonunit elements. We are hopeful that the future will bring a better understanding
of the structure theory of E∞-spaces, allowing us to move beyond unit groups to
e�ectively study multiplicative monoids.

Conventions and background
Our paper is written homotopically, and in particular we use the phrase “commutative
ring spectrum” to mean an E∞-ring spectrum.
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We will use the same name for both an abelian groupA and the associated Eilenberg–
Mac Lane spectrum, regarding the category of abelian groups as embedded fully
faithfully into the category of spectra. In particular, a commutative ring k is equivalent
to a commutative ring spectrum.

For a ring spectrum R, the unit group GL1 (R) ⊂ Ω∞R is the space of units under
the multiplicative monoidal product, or equivalently the space of self-equivalences
of R as a left R-module. If R has a commutative ring structure we write gl1 (R) for the
associated spectrum of units [May77, ABG+14]. There is a unit map S[GL1 (R)]→ R
for the adjunction between unit groups and spherical group algebras.

For a monoidal ∞-category C, the Picard space Pic(C) ⊂ C' is the space of
invertible objects and equivalences between them [Cla11, MS16].1 If C has a symmetric
monoidal structure then Pic(C) has an E∞-structure and we write pic(C) for the
associated Picard spectrum. If C = LModR is the category of modules over R, we
simply write Pic(R) and pic(R) instead.

We will require known identi�cations of the groups [A, ΣkB] of homotopy classes
of maps between Eilenberg–Mac Lane spectra, which we will simply state.2

1. The group [A,B] is isomorphic to the group Hom(A,B).

2. The group [A, ΣB] is isomorphic to the group Ext(A,B): this extension is identi-
�ed with the �ber of a map A→ ΣB.

3. The group [A, Σ2B] is isomorphic to the group Hom(A,B[2]) of 2-torsion homo-
morphisms A→ B.

4. The group [A, Σ3B] is part of a short exact sequence

0→ Ext(A,B[2]) → [A, Σ3B]→ Hom(A,B/2) → 0.

5. These identi�cations respect composition. In particular, the composition map
[B, Σ2C] × [A, ΣB]→ [A, Σ3C] is the Yoneda pairing

Hom(B,C[2]) × Ext(A,B) → Ext(A,C[2]).

As a result, a pair (д, Γ) representing a homomorphism B → C[2] and an exten-
sion 0 → B → Γ → A → 0 maps to zero if and only if the homomorphism д
extends from B to all of Γ.

Given an ordinary symmetric monoidal categoryD, the Picard space Pic(D) is the
nerve of an ordinary groupoid, consisting of the invertible objects and isomorphisms
between them. This means there is a �ber sequence

pic(D) → π0 pic(D)
k
−→ Σ2π1 pic(D).

1(cf. [Mat14, §2.2]) If the unit of C is κ-compact for some cardinal κ , then the objects of Pic(C) are
also κ-compact, and if C is presentable then the full subcategory of κ-compact objects is essentially small.
Therefore, for presentable monoidal∞-categories it is possible to identify Pic(C) with a small space even
though C is large.

2All of these are determined by �rst calculating that the groups of maps Z → ΣkZ are Z, 0, 0, Z/2, 0
for k = 0 . . . 5, and then using free resolutions of the source and target. The generator in degree 3 is the
composite of mod-2 reduction, the Steenrod square Sq2, and the Bockstein.
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Here π0 pic(D) is the classical Picard group of the category D, and π1 pic(D) is the
automorphism group AutD (I) of the monoidal unit. This �rst k-invariant is always
expressed in terms of the twist map. Namely, given an invertible module γ , the twist-
self-isomorphism γ ⊗ γ → γ ⊗ γ is multiplication by a 2-torsion automorphism τ (γ )
of the monoidal unit, an element of π1 pic(D) that satis�es τ (γ ) ◦ τ (γ ) = id. The
k-invariant π0 pic(D)

k
−→ Σ2π1 pic(D) is identi�ed with τ .

Acknowledgements
The author would like to thank Tobias Barthel, Clark Barwick, Sanath Devalapurkar,
Fabien Hebestreit, Lars Hesselholt, and Charles Rezk for discussions related to this
paper, and to the Max Planck Institute for their hospitality and �nancial support
while this paper was being written. The author was partially supported by NSF grant
1610408.

1 Formal radicals
Let α ∈ π0 (R) be a unit; α is then also represented by an element of π0 (gl1 (R)). Fix a
positive integer n. From this, we can construct an extension of abelian groups

0→ π0 (gl1 R) → E → Z/n → 0

such that the generator 1 of Z/n has a chosen lift to an element x ∈ E with xn = α . As
a set with an action of π0 gl1 (R), E �

∐n−1
i=0 π0 gl1 (R) · {x

i }.
This extension is determined by an extension class Ext1 (Z/n,π0 gl1 (R)), or equiva-

lently by a map
ρ̄ : Z/n → Σπ0 gl1 (R)

between Eilenberg–Mac Lane spectra.

De�nition 1. A formal n’th root of α is a lift ρ of ρ̄ to gl1 (R):

Σ gl1 (R)

��
Z/n

ρ
::

ρ̄
// Σπ0 gl1 (R)

We refer to the �ber of ρ as the extended unit spectrum gl1 (R, ρ) associated to ρ, and
the associated in�nite loop space as extended unit group GL1 (R, ρ).

The extended unit spectrum is part of a �ber sequence

gl1 (R) → gl1 (R, ρ) → Z/n,

and hence we get a decomposition GL1 (R, ρ) �
∐n−1

i=0 GL1 (R) · {x
i } as spaces with an

action of GL1 (R).
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Remark 2. The map ρ determines ρ̄: the map gl1 (R) → gl1 (R, ρ) is an isomorphism on
πk except when k = 0, when it is the inclusion π0 gl1 (R) → E. Therefore, ρ determines
the extension E and hence determines α up to n’th powers.

De�nition 3. Suppose that ρ is a formal n’th root of α . Then the algebra obtained by
adjoining this root is the relative smash product

R[ρ] = S[GL1 (R, ρ)] ⊗
S[GL1 (R )]

R.

Proposition 4. The coe�cient ring of R[ρ] is

π∗R[ρ] � π∗R[x]/(xn − α ).

Proof. The decomposition GL1 (R, ρ) �
∐n−1

i=0 GL1 (R) · {x
i } means that the spherical

group algebra S[GL1 (R, ρ)] decomposes as ⊕n−1
i=0 S[GL1 (R)] · {x i }, a free left S[GL1 (R)]-

module. Therefore, there is a simple Künneth formula that gives us an isomorphism of
modules:

π∗R[ρ] � π∗S[GL1 (R, ρ)] ⊗
π∗S[GL1 (R )]

π∗R

�
n−1⊕
i=0

π∗R · {x
i }.

Moreover, the identity xn = α for the element x ∈ E = π0 GL1 (R, ρ) completely
determines the multiplication in π∗R[ρ]. �

Remark 5. It is clear that, other than the calculation of the structure of the coe�cient
ring, there is nothing special about the group Z/n in the above discussion. Given a
map ρ : A→ Σ gl1 (R) for some abelian group A, lifting an extension

0→ π0 gl1 (R) → E → A→ 0,

there is an associated algebra R[ρ] whose coe�cient ring is a twisted central extension:

π∗R[ρ] � Z[E] ⊗
Z[π0 gl1 (R )]

π∗R

�
⊕
a∈A

π∗R · {a}.

We will see similar algebras more extensively in later sections.
Example 6. Suppose that n is a unit in π0R. Then n acts invertibly on the homotopy
groups πk gl1 (R) � πkR for k > 0: therefore the spectrum of maps from Z/n to the
0-connected cover τ≥1 gl1 (R) is trivial. Using the �ber sequence

Σ gl1 (R) → Σπ0 gl1 (R) → Σ2τ≥1 gl1 (R),

we �nd that, for any unit α , the map Z/n → Σπ0 gl1 (R) lifts essentially uniquely to a
formal n’th root Z/n → Σ gl1 (R).
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Example 7. Let K be the p-complete K-theory spectrum. Then it is possible to show
that the group [Z/p, Σ gl1 K] is trivial, and thus this method does not allow us to
adjoin x = p

√
α for any nontrivial element α of Z×p /(Z×p )p . To give a proof, however,

we need to know structural properties of the multiplication on K . The straight-line
proof we know uses Rezk’s K (1)-local logarithm `1 : gl1 K → K [Rez06], together
with nontrivial knowledge of low-degree k-invariants for gl1 K . In rough, the fact that
Rezk’s logarithm gives us an equivalence in degrees greater than 2 implies that there
is a diagram of �ber sequences:

Σ4 (ku)∧p
// τ≥2 gl1 K //

��

gl1 K

��
Σ2Zp

dd

Z×p

cc

Applying [Z/p,−] gives us a spectral sequence that computes [Z/p, Σ gl1 K]; in the
critical group the k-invariants of gl1 K give this spectral sequence one nontrivial
di�erential for p > 2 and two nontrivial di�erentials for p = 2.

However, the impossibility of adjoining these radicals can be shown directly using
K (1)-local power operations, in a manner exactly analogous to the proof that one
cannot adjoin roots of unity; in this form it generalizes. Let us sketch this argument.

If we had such an E∞-ring K-algebra L, it would be p-complete and thus K (1)-local.
Its coe�cient ring Zp[x]/(xp − α ) would then have a K (1)-local power operationψp ,
a ring endomorphism that agrees with the Frobenius mod p [Hop14]. The element
ζ = ψp (x )/x would then be a p’th root of unity. If ζ is not in Z×p , then L is a K (1)-local
E∞-ring containing a nontrivial p’th root of unity and Devalapurkar has shown this to
be impossible [Dev17]. If ζ is in Z×p , then α ≡ ψpx = ζ −1x mod p, which contradicts
the fact that 1,x , . . . ,xp−1 are a basis of this ring mod p.

2 Strict units
One source of formal roots is the theory of strictly commutative elements.

De�nition 8. The space Gm (R) of strictly commutative units of R is the space of maps
Z→ gl1 (R), or equivalently the space of E∞-maps Z→ GL1 (R). The generator 1 ∈ Z
induces forgetful maps Gm (R) → GL1 (R) → π0 gl1 (R).

In particular, a strictly commutative unit of R has an underlying unit in π0 (R).

Proposition 9. Suppose α is a strictly commutative unit of R. Then, for any n > 0, α
has a canonical lift to a formal n’th root.

Proof. The canonical Bockstein map Z/n → ΣZ can be composed with the map Z→
gl1 (R) classifying α . �

Example 10. Let R = S−1 (τ≤1S) be the localization of the �rst Postnikov truncation
of the sphere spectrum with respect to some set S of primes (not containing 2). Then
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there is a �ber sequence

gl1 (R) → (S−1Z)×
k
−→ Σ2Z/2.

This k-invariant corresponds to a (2-torsion) homomorphism (S−1Z)× → Z/2. This
homomorphism is a classical calculation of orientation theory: it is the map

n 7→



1 if n ≡ +1 mod 4,
−1 if n ≡ −1 mod 4.

As a result, one can determine the homotopy groups of the space of strictly commuting
elements, and in particular there is an exact sequence

0→ [Z, gl1 (R)]→ [Z, (S−1Z)×]→ [Z, Σ2Z/2].

We �nd that any unit in S−1Z which is congruent to 1 mod 4 lifts, essentially uniquely,
to a strictly commutative unit of R. This allows us to construct commutative algebras
such as R[

√
5] and R[

√
−3], even though these are rami�ed extensions on the level of

coe�cient rings.
Remark 11. In the case of strictly commutative units, we obtain a second description
of the algebra obtained by adjoining this root ρ. A strictly commutative element
determines a composite map

S[Z]→ S[GL1 (R)]→ R,

and so we can construct the algebra R[ρ] as R ⊗S[Z] S[ 1
nZ].

This has the bene�t that it readily lifts to a nonunit version. If we de�ne the strictly
commutative multiplicative monoid Mm (R) to be the space of E∞-maps

N→ M1 (R) = Ω∞⊗R

to the multiplicative monoid of R, then a strictly commutative element α can have an
n’th root adjoined via the construction

S[ 1
nN] ⊗S[N] R.

3 Strict gradings
The shift-by-1 in our de�nition of formal roots is strongly suggestive: the suspended
unit spectrum Σ gl1 (R) is a connective cover of the Picard spectrum pic(R). In this
section we will begin exploring Picard-graded analogues of our constructions.

De�nition 12. Suppose that A is an abelian group and C is a symmetric monoidal
∞-category. The space of strict A-gradings for C is the space of maps A→ pic(C), or
equivalently the space of E∞-maps A→ Pic(C). There is a composite A→ π0 pic(C),
which we refer to as the underlying A-grading.
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Remark 13. Suppose that we have any symmetric monoidal functor A → C. The
space A is a groupoid, so its image lies in C'; the objects in A have inverses under
the monoidal product, so monoidality of ρ implies that its image lies inside Pic(C).
We will not distinguish between symmetric monoidal functors A→ C and symmetric
monoidal functors A→ Pic(C).
Example 14. Let C be a symmetric monoidal ∞-category. The strict Picard space
of C, denoted by Pic(C), is the space of strict Z-gradings: maps Z → pic(C), or
equivalently E∞-maps Z → Pic(C). The generator 1 ∈ Z induces forgetful maps
Pic(C) → Pic(C) → π0 Pic(C), and we refer to the image as the underlying object.
Example 15. The space of strict n-torsion objects of C, denoted by Pic[n] (C), is the space
of strict Z/n-gradings: maps ρ : Z/n → pic(C), or equivalently maps Z/n → Pic(C) of
E∞-spaces. The co�ber sequence Z

n
−→ Z→ Z/n of spectra gives rise to the following

maps, where each double composite is a �ber sequence:

µn (R) → Gm (R)
n
−→ Gm (R)

∂
−→ Pic[n] (R) → Pic(R)

n
−→ Pic(R)

In particular, the map ∂ sends a strictly commutative element α : Z→ gl1 (R) to the
image

Z/n → ΣZ
α
−→ Σ gl1 (R) → pic(R)

of the formal n’th root associated to α .
Remark 16. For a commutative ring spectrum R, a strict n-torsion R-module with
underlying left R-module L has a choice of equivalence L⊗Rn → R. If the module L is
equivalent to R, then the map Z/n → π0 pic(R) is trivial and so the map lifts to a map
Z/n → Σ gl1 (R): a formal n’th root. We can detect which root (up to n’th powers) by
making a choice of an equivalence R → L; this determines a composite equivalence
R ' R⊗Rn → I ⊗Rn → R, and hence a unit in π0 (R).
Example 17. Suppose that C is a symmetric monoidal stable∞-category such that n is
a unit in the ring π0 EndC (I). Then for k > 0 there are isomorphisms

πk pic(C) � πk+1 AutC (I) � πk+1 EndC (I),

and the latter are acted on invertibly by n. Therefore, the �ber sequence

τ≥2 pic(C) → pic(C) → pic(hC)

induces an equivalence Map(Z/n,pic(C)) → Map(Z/n,pic(hC)). In this case, strict n-
torsion objects in C are equivalent to strict n-torsion objects in the homotopy category
hC.
Example 18. For any ordinary ring k , there is a �ber sequence

pic(k ) → Z→ Σ2k×,

where Σk is a generator of π0 pic(k ). The k-invariant is the twist permutation of
Σk , and is represented by the homomorphism Z � {±1} → k×. This k-invariant
becomes trivial on 2Z, and so the category of k-modules has a strict 2Z-grading. The
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spaces Gm (k ) are connected but not contractible, so the 2Z-gradings are unique up to
isomorphism but not canonical. We can make them canonical by choosing a 2Z-grading
of Z.3

Example 19 ([Law18, 1.3.7]). For any commutative ring spectrum R, the element ΣR in
Pic(R) determines a map Z = π0 pic(S) → π0 pic(R). For any d > 0, we get a composite
dZ → π0 pic(R). If this lifts to a strict dZ-grading, we could give this a name: an
Ed∞-structure on R,4 which should be a strengthening of the notion of an Hd

∞-structure
from [BMMS86].

The universal property of the real bordism spectrum MO is that it is initial among
commutative ring spectra with a nullhomotopy of the map BO → Pic(S) → Pic(MO )
of E∞-spaces. Equivalently, it is initial among commutative rings with a commutative
diagram of spectra

ko //

��

pic(S)

��
Z // pic(MO ).

In particular, this gives the real bordism spectrum MO a strict Z-grading and any
commutative MO-algebra inherits it. Similar considerations with complex or spin
structures structures give the complex bordism spectrum MU a strict 2Z-grading and
the spin bordism spectrum MSpin a strict 4Z-grading.
Example 20. The Atiyah–Bott–Shapiro orientation lifts to give the complex K-theory
spectrum ku a commutative MU -algebra structure, and the real K-theory spectrum ko
a commutative MSpin-algebra structure, due to work of Joachim [Joa04]. Therefore,
ku admits a strict 2Z-grading and ko admits a strict 4Z-grading.
Example 21. Let KC be the algebraic K-theory spectrum of the complex numbers,
which comes equipped with a map f : KC→ ku to the complex topological K-theory
spectrum. Work of Suslin showed that the map f is an equivalence after pro�nite
completion, and hence the �ber of f is rational. We would like to show that KC has a
strict 2Z-grading. (A similar argument applies to show that the strict 4Z-grading of
the real K-theory spectrum ko lifts to the algebraic K-theory KR.)

Consider the arithmetic square:

KC //

��

KCQ

��
KC∧ // (KC∧)Q

The functor GL1 preserves this pullback. When we apply pic we get a diagram of
3If 2 = 0 in k , this k -invariant is trivial and so the category of k -modules has a strict Z-grading. Moreover,

pic(F2) ' Z, and so this Z-grading is canonical.
4We are not very enthusiastic about extending this naming convention.
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connective spectra:
pic(KC) //

��

pic(KCQ)

��
pic(KC∧) // pic((KC∧)Q)

On π0 this is the constant square Z, and on π1 we get a bicartesian square

Z× //

��

Q×

��
Ẑ× // (ẐQ)×.

Together these show that this diagram of Picard spectra is a homotopy pullback
diagram. Let C be the co�ber of pic(KC) → pic(KC∧); its homotopy groups are then
rational above degree 2, and equal to the torsion-free group Ẑ×/Z× in degree one.

The obstruction to lifting the strict 2Z-grading

2Z→ pic(ku) → pic(ku∧) ' pic(KC∧)

to a 2Z-grading of pic(KC) is the map 2Z→ C . However, consider the �ber sequence

τ≥2C → C → ΣẐ×/Z×.

Since the left term is 1-connected and rational and the right term is torsion-free, there
are no nontrivial homotopy classes of maps from 2Z into either term, and hence
[Z,C] = 0. Therefore, the strict 2Z-grading of ku can be extended to KC.

4 Trivializing algebras
The ring spectrum constructed by adjoining formal radicals turns out to be a special
case of a more general construction associated to strict gradings. From this point
forward we will need to make use of [Lur09, Lur17].

De�nition 22. Suppose that C is a presentable symmetric monoidal ∞-category,
A is an abelian group regarded as a discrete symmetric monoidal category, and that
ρ : A→ C is a strictA-grading. We de�ne the trivializing algebraTρ to be the homotopy
colimit of ρ.

Remark 23. Since A is a discrete category, there is an equivalence in C of the form

Tρ '
∐
a∈A

ρ (a).

This homotopy colimit is a very special case of the Thom spectrum construction.
As such, work of Antolín-Camarena–Barthel gives the trivializing algebra a universal
property.
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Proposition 24. Suppose thatA is an abelian group and that ρ : A→ C is a symmetric
monoidal functor with trivializing algebra Tρ .

1. Tρ has a natural lift to a commutative algebra object: Tρ ∈ CAlg(C).

2. The algebraTρ is universal among commutative algebras in CAlg(C) with a chosen
commuting diagram

A
ρ //

��

pic(C)

��
∗ // pic(LModTρ ).

In particular, for any a ∈ A the algebra Tρ has a chosen equivalence of left Tρ -
modules ϕa : Tρ → Tρ ⊗ ρ (a), and there are chosen coherences ϕa ⊗ 1 ◦ ϕb ' ϕab .

Proof. The colimit has a commutative algebra structure by [AB14, Theorem 2.8].
We will now prove the universal property essentially, following the same line

of argument in [AB14, Lemma 3.15]. Applying [AB14, Theorem 2.13] to the functor
A→ C of symmetric monoidal∞-categories, we �nd the following: maps Tρ → R in
CAlg(C) are equivalent to lax symmetric monoidal lifts in the diagram

C/R

��
A //

55

Pic(C) // C.

The objects of C/R are maps N → R, with symmetric monoidal product given by

(N → R) ⊗ (M → R) ' (N ⊗ M → R ⊗ R → R).

The monoidal unit is the map I→ R. There is a symmetric monoidal functor C/R → C,
given by forgetting the structure map, and a symmetric monoidal functor C/R →
(LModR )/R , given by (L → R) 7→ (R ⊗ L → R).

However, since A is grouplike the image L → R of any object must be contained
in the invertible objects of C/R . This implies �rst that L is an invertible object of
C. This implies second that R ⊗ L → R is an invertible object of (LModR )/R ; this
happens only when this adjoint structure map is an equivalence. Conversely, if L → R
is a map whose adjoint R ⊗ L → R is an equivalence, tensoring with L−1 gives an
equivalence of R-modules R → R ⊗ L−1 of left R-modules, whose inverse is adjoint to
a map L−1 → R. �

Example 25. The trivializing algebra for the map 2Z→ pic(MU ) is the periodic MU -
spectrum MUP , whose coe�cient ring is π∗MU [u±1] for a generator u in degree 2. It
is universal among commutative algebras R with a nullhomotopy of the composite
ku → pic(S) → pic(R). The algebra MUP is often useful for translating between
even-periodic and Z/2-graded interpretations in chromatic theory.
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5 Root obstructions
The symmetric monoidal functor from C to its homotopy category hC induces a map
of Picard spectra pic(C) → pic(hC), identifying pic(hC) with the �rst nontrivial stage
τ≤1 pic(C) in the Postnikov tower for pic(C). For us to lift a map ρ̄ : A→ π0 pic(C) to
the �rst Postnikov stage pic(hC), it is necessary and su�cient that the composite map

A
ρ̄
−→ π0 pic(C)

k
−→ Σ2π1 pic(C)

is trivial. The result is an obstruction class: an element of [A, Σ2π1 pic(C))], and a lift
exists if and only if this obstruction vanishes. Two di�erent choices of lift to a map
A→ pic(hC) are represented by homotopy classes of maps A→ Σπ1 pic(C).

The identi�cation of the �rst k-invariant with the twist homomorphism τ leads us
to the following de�nition [Rez09].

De�nition 26. An element γ ∈ π0 pic(C) is symmetric if τ (γ ) = id in π1 pic(C).

This allows us to conclude the following.

Proposition 27. A map ρ̄ : A → π0 pic(C) lifts to a map A → pic(hC) if and only if
the elements ρ̄ (a) are symmetric for all a ∈ A. Two such lifts determine a di�erence class
in Ext(A,π1 pic(hC)).

Example 28. Suppose that L is an invertible object such that there is an equivalence
v : I → L⊗n . This equivalence v gives rise to a commutative diagram of symmetric
monoidal∞-categories

F (L⊗n ) //

��

F (L)

��
∗ // Pic(C),

where F (x ) is the free E∞-space on an object named x . Taking associated spectra gives
a diagram

S
n //

��

S

��
∗ // pic(C),

or equivalently a map S/n → pic(C). Conversely, there is a short exact sequence

0→ π1 pic(C)/[π1 pic(C)]n → [S/n,pic(C)]→ π0 pic(C)[n]→ 0.

The quotient expresses that a map from S/n determines an underlying n-torsion
object L in π0 pic(C). The kernel expresses that a map from S/n expresses that two
di�erent maps representing the same object L may di�er in their choice of equivalence
v : I→ L⊗n (modulo n’th powers).

If there is a symmetric monoidal functor f : C → D such that there is an equiva-
lence u : I→ f (L) in D, then the map S→ pic(D) determining f (L) becomes trivial.
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However, the extended map S/n → pic(D) does not always become trivial: it becomes
trivial precisely when there exists a choice of u : I→ f (L) in D such that un = f (v ).

The bottom homotopy group of S/n is Z/n. The map S/n → pic(hC) extends to a
map Z/n → pic(hC) if and only if L is symmetric, and a strict Z/n-grading would be
an extension to a map Z/n → pic(C). In rough, we can think of this in the following
way. If we have a strict Z/n-grading, then it is a rigid version of choosing an object L
with an equivalence v : I→ L⊗n ; the trivializing algebra T then extracts an n’th root
of this chosen equivalence v .
Example 29. Suppose that R is a commutative ring spectrum which is 2n-periodic:
there is a unit v ∈ π2nR. This determines a symmetric element Σ2R, and a lift of Σ2R to
a strict n-torsion object allows us to construct an R-algebra whose Z-graded coe�cient
ring is

π∗R[x]/(xn − av )

for some well-de�ned a ∈ (π0R)
×/[(π0R)

×]n . If n is a unit in π0R then we also �nd
that such algebras can be constructed, essentially uniquely, for any value of a. These
extensions appear, for example, when relating completed Johnson–Wilson spectra to
Lubin–Tate spectra [LN12, §4].

6 Grading extensions
In this section, we will begin the process of extending gradings by adjoining formal
radicals to elements in the Picard group. We �x a symmetric monoidal presentable
∞-category C, and let Pic(C) be the Picard space of invertible elements in C.

De�nition 30. Let
0→ π0 pic(C) → Γ → B → 0

be an extension of abelian groups, represented by a map

ρ̄ : B → Σπ0 pic(C)

between Eilenberg–Mac Lane spectra. A extension to Γ-grading is a lift of ρ̄ to pic(C):

Σpic(C)

��
B

ρ
::

ρ̄
// Σπ0 pic(C)

We refer to the �ber of ρ as the extended Picard spectrum pic(C, ρ) associated to ρ, and
the associated in�nite loop space as the extended Picard group Pic(C, ρ).

The extended Picard spectrum is part of a �ber sequence

pic(C) → pic(C, ρ) → B,

and on π0 this realizes the extension 0 → π0 pic(C) → Γ → B → 0. We get a
decomposition Pic(C, ρ) �

∐
b ∈B Pic(C) · {b} as spaces with an action of Pic(C).
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Remark 31. Again, the map ρ determines ρ̄ and the extension Γ.
By de�nition, there is an inclusion i : Pic(C) ⊂ C of symmetric monoidal ∞-

categories. The latter is presentable, whereas the former is (essentially) small. By
formally adjoining colimits to C, we obtain a factorization

Pic(C) → P (Pic(C)) → C

through the presheaf∞-category, where the second functor preserves colimits.

Proposition 32. For a symmetric monoidal∞-category C, there is a diagram

P (Pic(C, ρ)) ← P (Pic(C)) → C

of symmetric monoidal presentable∞-categories.

Proof. Fix a regular cardinal κ such that the unit of C is κ-compact. Then all of
the objects of Pic(C) are contained inside the essentially small subcategory Cκ of
κ-compact objects.

The functor P is the left adjoint in an adjunction betweenκ-small∞-categories and
κ-presentable ∞-categories; (−)κ is the right adjoint. Moreover, the tensor product
of presentable ∞-categories is universal with respect to functors that are colimit-
preserving in each variable separately; in particular, this gives us canonical identi�ca-
tions

FunPrL (P (ΠSi ),C) ' FunPrL (⊗P (Si ),C)

natural in C. This makes the functor P strong symmetric monoidal, and lifts it to a
left adjoint to the functor taking a κ-presentable symmetric monoidal∞-category to
the symmetric monoidal subcategory of κ-compact objects. For a small symmetric
monoidal∞-category S , the induced symmetric monoidal structure on the category
P (S ) is given by left Kan extension: this is the Day convolution monoidal structure
[Gla16, Lur17]. It is colimit-preserving in each variable, and for objects s and t of S
with associated presheaves js and jt there is a natural isomorphism js ⊗ jt � js⊗t .

The Day convolution makes the functor P (Pic(C)) → P (Pic(C, ρ)) symmetric
monoidal, and the adjunction gives us a composite symmetric monoidal functor

P (Pic(C)) → P (Cκ ) → C

as desired. �

De�nition 33. Suppose that ρ is an extension to Γ-grading. We de�ne the category
obtained by extending gradings to Γ to be the symmetric presentable∞-category

C[ρ] = P (Pic(C, ρ)) ⊗P (Pic(R )) C.

Proposition 34. As a presentable category left-tensored over C, we have

C[ρ] �
∏
b ∈B

C.

In particular, C[ρ] is isomorphic to the category of B-graded objects of C.
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Proof. Since Pic(C, ρ) �
∐

b ∈B Pic(C) as categories left-tensored over Pic(C),

P (Pic(C, ρ)) �
pres∐
b ∈B

P (Pic(C))

as presentable∞-categories left-tensored over P (C)—here the coproduct taking place
within presentable ∞-categories. The relative tensor product preserves colimits in
each variable, and thus we have

C[ρ] '
pres∐
b ∈B

C

as categories left-tensored over C. However, within presentable∞-categories, coprod-
ucts and products over a small index set coincide. �

One source of grading extensions is the theory of strict gradings.

Proposition 35. Suppose that 0→ G → Γ → B → 0 is an extension of abelian groups.
Then every strict G-grading of C has a naturally associated extension to a Γ-grading.

Proof. The extension Γ is classi�ed by a map B → ΣG, which can be composed with
the strict G-grading G → pic(C). �

Example 36. Since MO has a strict Z-grading, for any MO-algebra R we can then
adjoin invertible objects L to the category of MO-modules such that L⊗n ' ΣMO , or
extend to any grading Z ⊂ Γ. For example, we can embed the category of MO-modules
into the category of Q/Z-graded MO-modules, giving the latter a symmetric monoidal
structure where shifts by integers are extended to shifts by rational numbers.
Example 37. Similarly, the strict 2Z-grading onMU allow us to adjoin invertible objects
L such that L⊗n � Σ2MU . (Note that if we take n = 2 in this construction, we �nd
that the object Σ−1L is a nontrivial object with (Σ−1L)⊗2 � MU .) This allows us to
extend from a Z-grading on MU -modules to a grading over Z⊕2ZQ � Q×Z/2. Similar
constructions are possible with MU -algebras like ku or with the algebraic K-theory
spectrum KC.

7 Grading obstructions
As in §5, we can identify pic(hC) with the �rst nontrivial stage τ≤1 pic(C) in the
Postnikov tower for pic(C). For us to lift a map ρ̄ : B → Σπ0 pic(C) to the �rst
Postnikov stage, it is necessary and su�cient that the associated obstruction

B
ρ̄
−→ Σπ0 pic(C)

k
−→ Σ3π1 pic(C)

is trivial. Two di�erent choices of lift to a map B → Σpic(hC) di�er by an element of
[B → Σ2π1 pic(C)].

This can be concisely packaged into the following result.
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Proposition 38. Given an extension 0→ π0 pic(C) → Γ → B → 0, the lifts of the map
ρ̄ : B → Σπ0 pic(C) to a map ρ≤1 : B → Σpic(hC) are in bijective correspondence with
extensions of the twist homomorphism τ : π0 pic(C) → π1 pic(C)[2] to all of Γ.

Example 39. This construction can recover the twisted Z/2-graded categories of Rezk
[Rez09, §2].5 Let C be an ordinary presentable symmetric monoidal category and ω an
invertible object of C. We would like to construct a larger category C[

√
ω] where ω

is the square of another invertible module. This is would be a symmetric monoidal
category of Z/2-graded objects (A0,A1) of C, representing A0 ⊕ (

√
ω ⊗ A1), with a

tensor product satisfying

(A0,A1) ⊗ (B0,B1) �
(
(A0 ⊗ B0) ⊕ (ω ⊗ A1 ⊗ B1), (A0 ⊗ B1) ⊕ (A1 ⊗ B0)

)
.

In this case, the underlying category is ordinary and so pic(C) = pic(hC). For us to
extend gradings, it is necessary and su�cient thatω be symmetric. If this is the case, the
possible choices of extension represent choices of 2-torsion element τ (

√
ω) ∈ AutC (I),

a Koszul sign rule for the twist isomorphism on the square root of ω. If C is additive,
choosing τ (

√
ω) = −1 recovers Rezk’s ω-twisted tensor product.

8 Brauer roots
Just as the unit spectrum is extended by the Picard spectrum, the Picard spectrum is
extended by the Brauer spectrum [GL16, Hau17]. Fix a symmetric monoidal presentable
∞-category C and let CatC be the category of presentable∞-categories left-tensored
over C. This has a symmetric monoidal under ⊗C . We write Br(C) = Pic(CatC ) for the
Brauer space parametrizing invertible objects of CatC that admit a compact generator,
and br(C) for the associated spectrum.

The unit of CatC is C itself, and all C-linear functors are of the formX 7→ X ⊗B for
some B ∈ C; in particular, this identi�es the C-linear functors C → C with C' itself,
with composition given by the tensor in C. As a result, the space of self-equivalences
of the unit is Pic(C), and so there is a �ber sequence

Σpic(C) → br(C) → π0 br(C).

De�nition 40. Suppose that C is a presentable symmetric monoidal∞-category, B
is an abelian group regarded as a discrete symmetric monoidal category, and that
ρ : B → Cat(C) is a symmetric monoidal functor. We de�ne the trivializing category
Tρ to be the homotopy colimit of ρ, calculated in CatC .

Remark 41. Since B is a discrete category, there is an equivalence in CatC of the form

Tρ '

CatC∐
b ∈B

ρ (b) '
∏
b ∈B

ρ (b).

5Rezk gives these constructions in the case where C is merely additive, which is not covered by our
assumption that C is presentable.
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Proposition 42. Suppose that B is an abelian group and that ρ : B → C is a symmetric
monoidal functor with trivializing category Tρ .

1. The map ρ has a natural lift to a map B → Br(C).

2. Tρ has a natural lift to a symmetric monoidal∞-category under C.

3. The symmetric monoidal∞-category Tρ is universal among symmetric monoidal
presentable∞-categories under C with a chosen commutative diagram

B //

��

br(C)

��
∗ // br(Tρ ).

In particular, for any b ∈ B there is an equivalence ϕb : Tρ → Tρ ⊗C ρ (b) of
presentable∞-categories left-tensored over Tρ , and there are chosen equivalences
of functors ϕa ⊗ 1 ◦ ϕb

∼
−→ ϕab .

Proof. This is Proposition 24, applied to the (large) ∞-category of presentable ∞-
categories. �

Example 43. Let C = LModR where R is a commutative ring spectrum. Then each
object of Br(R) is represented by the category of right modules over an Azumaya
R-algebraQ which is well-de�ned up to Morita equivalence [BRS], [GL16, 5.13]. Given
a symmetric monoidal functor ρ : B → Br(R), we can therefore choose algebras Q (b)
so that there is an equivalence

Tρ '
∏
b ∈B

RModQ (b ) .

The symmetric monoidal structure on this category takes more work to describe. The
symmetric monoidal structure on ρ gives Morita equivalences between Q (p) ⊗R Q (q)
and Q (p +q), which are expressed by Q (p) ⊗R Q (q) ⊗R Q (p +q)op -modules Mp,q . The
symmetric monoidal structure is given by a formula of the form

(Xb )b ∈B ⊗ (Yb )b ∈B �
*.
,

⊕
p+q=a

(Xp ⊗ Yq ) ⊗
Q (p )⊗Q (q )

Mp,q
+/
-b ∈B

.

However, describing the full symmetric monoidal structure in this fashion would
require us to carefully express coherence relations between tensor products of the
bimodules Mp,q . We can think of these objects as “coe�cients” for the multiplication
on this product category.
Remark 44. The �rstk-invariant in the Brauer spectrum is a mapπ0 br(C) → Σ2π0 pic(C),
and this is still expressed by the twist self-equivalence. However, now this twist self-
equivalence occurs on the level of module categories. For a commutative ring spectrum
R with an Azumaya R-algebra Q , the twist equivalence of RModQ ⊗RQ is expressed by
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tensoring with the a Q ⊗R Q-bimodule Q ⊗R Qτ , where the action on the left is the
standard one and on the right factors through the twist automorphism. The fact that
Q ⊗R Q is Azumaya means that this bimodule must be of the form Q ⊗R Q ⊗R τ (Q ) for
some τ (Q ) ∈ Pic(R).6

More concretely, we can identify τ (Q ) with the R-module

FQ ⊗RQ-bimod (Q ⊗R Q, (Q ⊗R Q )τ ).

This assignment remains relatively mysterious to the author. In particular, it is not
clear whether there are algebraic examples where it is nontrivial.
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