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Abstract

The dual Steenrod algebra has a canonical subalgebra isomorphic to the homol-
ogy of the Brown–Peterson spectrum. We will construct a secondary operation in
mod-2 homology and show that this canonical subalgebra is not closed under it.
This allows us to conclude that the 2-primary Brown–Peterson spectrum does not
admit the structure of an En -algebra for any n ≥ 12, answering a question of May
in the negative.

1 Introduction
The following appeared as Problem 1 in J.P. May’s “Problems in in�nite loop space
theory” [May75].

Problem 1.0.1. For any prime p, does the p-local Brown–Peterson spectrum BP of [BP66]
admit the structure of an E∞-algebra?

Our goal in this paper is to address this question when p = 2. We will construct a
secondary operation in the homology of E∞-algebras at the prime 2 and show, with an
analysis that begins with the calculations of Johnson–Noel [JN10], that the homology
H∗BP cannot admit such a secondary operation. Thus, Problem 1.0.1 has a negative
answer at the prime 2.

1.1 Background
Coherently commutative multiplication structures have a long history in homotopy
theory, originating in the study of the cup product. The cup product in the coho-
mology of a space X comes from the structure of a di�erential graded algebra on
the cochains C∗ (X ), and while there are many variants on this algebra structure that
all give rise to the cup product there is no natural cochain-level cup product that is
graded-commutative. Instead, the cup product α^ β and its reverse ±β^α are chain
homotopic by a natural operation α^1 β , called the cup-1 product. The cup-1 product
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is not graded-commutative either, but di�ers from its reverse by an operation called the
cup-2 product, and these constructions extend out both to arbitrarily high “coherences”
(giving cup-i products for all i) and to operations accepting arbitrarily many inputs
(giving a more complicated set of operations of several variables discussed in [MS04]).
The result is called an E∞-algebra structure and Steenrod’s reduced power operations
in the cohomology of spaces are built from it [Ste62].

Since then, these coherently commutative multiplications have been recognized in
many other areas: iterated loop spaces, monoidal structures on categories, structures
in mathematical physics related to string theory, and multiplications in cohomology
theories. By contrast with algebra, where commutativity is simply a property of a
ring, coherent multiplications come in a hierarchy: there are E1-algebra structures that
correspond to associative products and there are E∞-algebra structures that correspond
to commutative products, but there are also En-algebra structures for 1 < n < ∞ that
interpolate between these concepts.

When we switch from ordinary cohomology to generalized cohomology theories,
chain complexes become replaced with spectra. A ring spectrum R is a representing
object for a cohomology theory R∗ (−) so that cohomology with coe�cients in R
naturally takes values in rings. This was re�ned to the concept of an En-algebra
structure on the spectrum R in [BMMS86, I.4], and these more re�ned algebras have
come to occupy a central role because En-algebra structures produce concrete tools
that are not available to an ordinary ring spectrum [Man12, Lur17].

• An E1-algebra R can be given categories of left R-modules and right R-modules,
whose homotopy categories are triangulated categories. These enjoy several
forms of compatibility as R varies, extend to categories of bimodules, and have
relative smash products ∧R with properties much like the tensor product.

• The category of left modules over an E2-algebra R is canonically equivalent to the
category of right modules, and the smash product∧R makes the category of leftR-
modules into a monoidal category. The homotopy category of left R-modules has
the structure of a (neither symmetric nor braided) tensor triangulated category.

• The homotopy category of left modules over an E3-algebra has the structure of
a braided monoidal category.

• The homotopy category of left modules over an E4-algebra has the structure of
a symmetric monoidal category.

• The category of modules over an E∞-algebra R has homotopy-theoretic versions
of symmetric power operations, making it possible to discuss a relative version of
the above: we can de�ne En R-algebras which satisfy all of the above properties.

• An E∞-algebraR has, for any principal Σn-bundle P → B, natural geometric power
operations R0 (X ) → R0 (P ×Σn X

n ) and R0 (X ) → R0 (B×X ) in R-cohomology that
enhance the multiplicative structure. When P = Σn these recover the operation
that sends a class to its nth power.

Many examples of E∞-algebras exist. Commutative rings A produce E∞-algebras HA
via the Eilenberg–Mac Lane construction; the spectra KO and KU , representing real
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and complex K-theory, have E∞-algebra structures whose origin is the tensor product
of vector bundles; bordism spectra like MO , MSO , MU , and the like have E∞-algebra
structures whose origin is the product structure on manifolds; if Y is an in�nite loop
space, then there is a spherical group algebra S[Y ] = Σ∞+Y with an E∞-algebra structure;
and if R is an E∞-algebra and X is a space, there is a spectrum RX (playing the role of
“cochains on X with coe�cients in R”) with an E∞-algebra structure that combines the
multiplication on R with the diagonal map X → X × X .

Problem 1.0.1 dates back to the �rst systematic studies of E∞-algebras. Under-
standing why this result is so desirable requires knowing a little about what the
Brown–Peterson spectrum is and how important it is in stable homotopy theory.

The complex bordism spectrum MU has an E∞-algebra structure and it is central
to Quillen’s relation between stable homotopy theory and formal group laws [Qui69],
which initiated the subject of chromatic homotopy theory. However, while almost the
entirety of chromatic theory is possible to phrase in terms of MU , the p-localization
MU(p ) decomposes into summands equivalent to this irreducible Brown–Peterson
spectrum BP . The Brown–Peterson spectrum has simpler cohomology and homotopy
groups thanMU and has canonical descriptions that are internal to the stable homotopy
category [Pri80]. The Brown–Peterson spectrum also exhibits the close connection
between p-local stable homotopy theory and the theory of formal group laws, but with
the added bene�t that nearly every deep structural property of chromatic homotopy
theory or formal group law theory is made more concise and more conceptually
accessible through the eyes of BP-theory (see, for example, [Rav86] for extensive
applications).

The existence of an E∞-algebra structure on BP would be useful in several ways.

• The Adams–Novikov spectral sequence is a method for calculating the set of
homotopy classes of maps between two spectraX andY and can be derived from
either their MU -homology or BP-homology. The computational tools using
MU -theory (such as the cobar complex) are well behaved with respect to the
geometric power operations discussed earlier, which appear in places such as
the construction of manifolds of Kervaire invariant one [Bru01]. If BP had an
E∞-algebra structure then computations of these geometric power operations
using MU -theory could instead be related to simpler computations in BP-theory.

• Such a structure would allow more concise constructions of many important ob-
jects in chromatic theory, such as the Morava K-theories K (n) and the truncated
Brown–Peterson spectra BP〈n〉, as BP-algebras rather than as MU -algebras.

• These algebra structures would mean that several computations with these ring
spectra could be governed by the computations for BP-theory, such as computa-
tions of topological Hochschild homology and topological cyclic homology that
are important to current work in algebraic K-theory [AR02]. These can also be
extended by relative computations in BP-modules, which are much simpler than
the relative calculations in MU -modules.

• Perhaps most importantly, the Brown–Peterson spectrum is one of the most
prominent examples of an important homology theory where our knowledge of
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geometric interpretations (e.g. via Baas–Sullivan theory [Baa73]) lags far behind
our algebraic knowledge.1 Many of the prominent examples of E∞-algebras,
such as K-theory and bordism theory, originate in cohomology theories with
geometric cycles or cocycles that have a product. The existence of an E∞-algebra
structure on BP would be a good indicator that a strong geometric interpretation
existed.

This problem has generated a great deal of interesting research. The existence of
multiplication structures in the homotopy category has a long history (for example, see
the introduction of [Str99]). Several forms of obstruction theory have been developed
which showed that many spectra constructed by Baas–Sullivan theory admit E1-algebra
structures [Rob89, Laz01, BJ02, Ang08]. More sophisticated obstruction theory has
appeared for E∞-algebras [Rob03, GH04], and Richter obtained lower bounds on the
amount of commutativity present inBP based on Robinson’s obstruction theory [Ric06].
Techniques such as localization and idempotent splitting were developed in [May01]
to handle additive and multiplicative versions of the construction of BP . More recently
Basterra–Mandell showed that BP is a split summand ofMU(p ) as an E4-algebra [BM13],
and so the homotopy category of BP-modules has a symmetric monoidal structure;
Chadwick–Mandell used idempotent splittings to show that this could be done with
the Quillen idempotent as E2-algebras [CM15]. Both Hu–Kriz–May [HKM01] and
Baker [Bak14] gave iterative constructions by methods that kill torsion, producing
two di�erent types of closest possible torsion-free E∞-algebra to BP . An unpublished
paper of Kriz attempted to prove that BP admits an E∞-algebra structure, and Basterra
developed the theory of topological André-Quillen (TAQ) cohomology based on his
ideas—this theory allows the construction of E∞-algebras by systematically lifting the
k-invariants in the Postnikov tower from ordinary cohomology to TAQ-cohomology
[Kri95, Bas99]. Kriz’s original program foundered on a technical detail, but TAQ has
been central in a great deal of research since.2

However, the hope that Problem 1.0.1 has a positive solution perhaps originated in a
time of much greater optimism, and the intervening years have shown that the additive
and multiplicative structure of a spectrum are di�cult to untangle from each other.
Indeed, there is something closer to a reciprocity relationship, where requirements
of the additive structure are rewarded with constraints on the multiplicative and vice
versa. In line with this, there have been several more recent calculations showing
that desirable properties of a multiplication on BP cannot be realized. Hu–Kriz–May
showed that there cannot be a map of E∞-algebras BP → MU(p ) because it con�icts
with calculation of Dyer–Lashof operations in their homology, despite the presence of
the Quillen idempotent which describes such a splitting additively and algebraically
[HKM01]. In the reverse direction, Johnson–Noel showed with hard calculations that
the particular map of ring spectra MU(p ) → BP employed to great e�ect in chromatic
theory cannot be a map of E∞-algebras for p ≤ 13 [JN10], based on a power operation
criterion due to McClure [BMMS86, VIII.7.7, 7.8].

1From [May75]: “The point here is that the notion of an E∞ ring spectrum seems not to be a purely
homotopical one; good concrete geometric models are required, and no such model is known for BP .”

2The problem, insofar as the author understands, was establish certain elements in the Miller spectral
sequence computing TAQ-cohomology needed to be shown to be permanent cycles, but the operations used
to establish this were insu�ciently compatible with the di�erentials.
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The Hu–Kriz–May result seems more decisive mainly because it uses structure that
is forced. The mod-p homology groups H∗BP are identi�ed as a canonical subalgebra
of the dual Steenrod algebra H∗HFp , and this means that the ring structure on H∗BP
and operations coming from any En-algebra structure (including the Dyer–Lashof
operations mentioned above) are completely determined by those in the dual Steenrod
algebra. It is straightforward to show that H∗BP is closed in H∗HFp under the Dyer–
Lashof operations, and so we cannot exclude the possibility that BP is an E∞-algebra
using a relation between these primary operations. This paper shows that, at the
prime 2, there does exist a contradiction for a more subtle reason: while H∗BP is closed
under primary operations, it is not closed under secondary operations. This parallels
Adams’ solution of the Hopf invariant one problem using secondary cohomology
operations [Ada66]. The proof will critically rely on Johnson–Noel’s calculation of
power operations in complex bordism.

Theorem 1.1.1 (5.4.2, 5.4.5). There exists a natural secondary operation in the mod-
2 homology of E12-algebras with the following properties. For R an E12-algebra, the
secondary operation is de�ned on the subset of H2R satisfying certain identities between
Dyer–Lashof operations in HkR for 5 ≤ k ≤ 13, and the secondary operation takes values
in a quotient of H31R. This operation is preserved by maps R → R′ of E12-algebras.

In the dual Steenrod algebra H∗HF2 � F2[ξ1, ξ2, . . . ], this operation is de�ned on
the element ξ 21 ∈ H2 (HF2) and, mod decomposables, unambiguously takes the value
ξ5 ∈ H31 (HF2).

With this theorem, we can exclude the existence of an E∞-algebra structure on
the 2-local Brown–Peterson spectrum and several related objects (e.g. the generalized
BP〈k〉 whose cohomology is discussed in [LN14, 4.3] and whose additive uniqueness
is discussed in [AL17]).

Theorem 1.1.2 (5.4.6, 5.5.4). Suppose that R is a connective E12-algebra with a ring
homomorphism π0R → F2 such that the induced map on mod-2 homologyH∗R → H∗HF2
is injective in degrees 5 through 13. If ξ 21 is in the image of H2 (R), then the element ξ5 is
in the image of H31R mod decomposables.

In particular, the 2-local Brown–Peterson spectrum BP , the (generalized) truncated
Brown–Peterson spectra BP〈k〉 for k ≥ 4, and their 2-adic completions do not admit the
structure of En-algebras for any 12 ≤ n ≤ ∞.

1.2 Remarks on obstruction theory
The secondary operation we will de�ne is determined by a relation between Dyer–
Lashof operations (the full relation is rather large, and is displayed in Proposition 5.4.1).
For us, this relation is not obvious; it is not obvious that this particular relation is
relevant; and it is not obvious that the resulting secondary operation is calculable.
We did not �nd this relation by trial and error—or, more accurately, we tried to �nd
relevant secondary operations by trial and error and failed. All of our preliminary
attempts resulted in combinations that were excluded by necessity of compatibility
with the Steenrod operations. In this section we will indicate a little about how the
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main result of this paper was found, as opposed to how it is written.3
The obstruction theory of Goerss–Hopkins [GH] takes as input a simplicial operad,

an appropriate homology theory E∗, and an algebra A for this simplicial operad in
E∗E-comodules. From this, it produces an obstruction theory to calculate the moduli
space of algebras over the geometric realization of this operad whose E-homology
is A. Senger specialized this to the case where E is mod-p homology and the operad
is a constant E∞-operad [Sen]. His work produced an obstruction theory whose
input is an algebra A with Steenrod operations and Dyer–Lashof operations satisfying
instability relations and Nishida relations, whose obstruction groups are Ext-groups
in this category, and which calculated the moduli space of E∞-algebras whose mod-p
homology is A. He also developed several tools for reducing these calculations to
more tractable Ext-groups that could, in the case of BP or BP〈n〉, be calculated with a
Koszul resolution [Pri70]. By construction, this obstruction theory remembers that
the Nishida relations will exclude a number of possible obstructions. (The problem
encountered in Kriz’s preprint [Kri95] could be viewed as the accidental exclusion of
too many obstructions in this fashion.)

In the case of the 2-primary Brown–Peterson spectrum, calculations with this
obstruction theory indicated two �rst potential nonzero obstruction classes. We can
de�ne y, Rn , and vm to be, respectively, Ext-Koszul dual to the generator ξ 21 ∈ H2 (BP ),
the Dyer–Lashof operation Qn−1, and the Milnor primitive Qm−1 in the Steenrod alge-
bra. (TheRn are closely related to unpublished work of Basterra–Mandell on operations
in TAQ-cohomology.) Then, using this notation, the �rst possible obstruction classes
are v2

3R
19R9y and v4R21R9y. Under the yoga of secondary operations described by

Adams [Ada66], the potential obstruction class v4R21R9y would detect an obstruction
from a secondary operation whose value involved ξ5 (detected by the Milnor primi-
tive), combining relations that (at least) involved the Adem relations for Q20Q8 and an
identity satis�ed by Q8ξ 21 .

Indeed, our main result is that this is the case. However, much of the progress
in this paper traces its origin back to the actual calculation of these relations. After
determining the needed identities in Proposition 5.4.1, we could identify most of the
relations in H∗BP ⊂ H∗HF2 as already holding true in H∗MU , making it possible to
begin juggling this secondary operation through much simpler ones passing through
H∗MU .

1.3 Further questions
In the original version of this paper, we expressed the following strong belief that the
2-primary Brown–Peterson spectrum was not unique in failing to admit an E∞-algebra
structure.
Conjecture 1.3.1. For any odd prime p, the p-local Brown–Peterson spectrum does not
admit the structure of an E∞-algebra.

Senger has already extended the methods of this paper to prove Conjecture 1.3.1,
showing that BP (and BP〈n〉 for n ≥ 4) do not admit the structure of E2(p2+2)-algebras
at any prime p [Sen17].

3A more detailed explanation of this calculation is now in [Law17].
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Our keystone computation in this paper is a Dyer–Lashof operation in a version
of the 2-primary dual Steenrod algebra for MU -modules.

Problem 1.3.2. Determine how the Dyer–Lashof operations act on the p-primaryMU -
dual Steenrod algebras π∗ (HFp ∧MU HFp ).

Baker has shown in [Bak15] how to derive the Nishida relations, describing the
interaction between cohomology operations and Dyer–Lashof operations, from the
Dyer–Lashof operations in the ordinary dual Steenrod algebra. This suggests that a
solution to the previous problem would give additional constraints on MU -algebras
by describing additional relations that have to hold in their mod-p homology relative
to MU .

Problem 1.3.3. Determine analogues of Nishida relations between the homology opera-
tions on HMU

∗ R = π∗ (HFp ∧MU R) and the Dyer–Lashof operations.

In particular, Remark 4.4.7 describes how the Dyer–Lashof operation that we have
calculated seem to place a cap on multiplicative structure for the map MU → BP at the
prime 2—a stronger cap than the one we have shown for the amount of multiplicative
structure on BP .

Problem 1.3.4. Find constraints on the values of n for which the p-local Brown–Peterson
spectrum can admit the structure of an En MU -algebra.

Again, in the time since we raised this question, Senger has shown that BP does
not admit the structure of an E2p+3 MU -algebra at any prime p [Sen17].

The calculations of this paper deduce our unexpected Dyer–Lashof operation in
the MU -dual Steenrod algebra from a multiplicative Dyer–Lashof operation in the
Hopf ring for MU , and an induced operation in the homology of the space SL1 (MU ) ⊂
GL1 (MU ) of strict units. This is a �rst step towards determining the homology of
the spectrum дl1 (MU ), about which very little is known, using the Miller spectral
sequence [Mil78].

Problem 1.3.5. Determine multiplicative Dyer–Lashof operations in the Hopf ring for
MU and in the homology ofGL1 (MU ). Determine homology groups of the unit spectrum
дl1 (MU ) and the Picard spectrum pic (MU ), as well as information about their homotopy
types.

Remark 2.1.9 points out that our description of secondary operations and Toda
brackets is not optimal. For example, it sometimes requires strict basepoints for
mapping spaces, strict unitality, and strict initial and terminal objects, all of which
are not invariant under unbased homotopy equivalences between objects and not
invariant under Dwyer–Kan equivalences between topological categories. However,
the tools should apply in much wider generality; investigations in this direction have
been carried out by Bhattacharya and Hank.

Problem 1.3.6. Develop a homotopical framework for secondary operations.

For example, a combinatorial framework analogous to quasicategories that encodes
the notion of a category enriched in based spaces, equivalent to that introduced by
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Gepner–Haugseng [GH15], would be extremely useful in this direction. Ideally, this
should make Cohen–Jones–Segal’s construction of �ltered spectra from coherent
chain complex objects [CJS95, §5] part of an equivalence between �ltered objects and
coherent chain complex objects in a stable∞-category, extending Lurie’s version of
the Dold–Kan correspondence [Lur17, 1.2.4].

Our calculations with power operations in the Hopf ring make use of the H 2
∞-

algebra structure on MU , a concept from [BMMS86] that has been largely neglected
in the modern literature. It should be possible to describe a fully coherent version of
this structure using the language of Picard spaces and Picard spectra [MS16].

Problem 1.3.7. Give a systematic development of Ed∞-algebras as homotopy coherent
versions of Hd

∞-ring spectra, and show that the Hd
∞-structures on classical Thom spectra

constructed in [BMMS86, VIII.5.1] lift to Ed∞-algebra structures.

An Ed∞-structure on an E∞-algebra R should be a lift of the map of spaces

dZ ⊂ Z ⊂ Pic(S) → Pic(R)

to a map of E∞-spaces, corresponding to a functor of symmetric monoidal∞-categories.
In close analogy with the work of Ando–Blumberg–Gepner–Hopkins–Rezk [ABG+14],
the point {dk } ↪→ Pic(S) representing Sdk gives rise (via the E∞-space structure) to
a diagram BΣm → Pic(S), whose homotopy colimit is a Thom spectrum on BΣm
representing the extended power construction on Sdk . An Ed∞-structure on R should
then make the resulting diagram BΣm → Pic(R) factor through a constant diagram
with value Sdkm , allowing us to conclude that the smash product of R with the Thom
spectrum has an equivalence to R ∧(BΣm )+ ∧ S

dkm .

1.4 Outline of proof
We will begin by calculating a Dyer–Lashof operation in the MU -dual Steenrod algebra
π∗ (H ∧MU H ), where H is the Eilenberg–Mac Lane spectrum HF2. This has maps in
from the dual Steenrod algebra π∗ (H ∧H ) and out to the homology of SU which
become a left exact sequence

0→ Qπ∗ (H ∧H ) → Qπ∗

(
H ∧

MU
H

)
→ QH∗SU

on indecomposables. The Dyer–Lashof operations on the left are known by work of
Steinberger, and were employed by Tilson [Til16] to calculate operations in the middle
term. The Dyer–Lashof operations on the right are known by work of Kochman. The
operation we will calculate is the �rst possible hidden extension and it turns out to be
nontrivial.

To carry out this calculation we rely on calculations of unstablemultiplicative Dyer–
Lashof operations. This uses Ravenel–Wilson’s description of Hopf ring structure
on the homology of the spaces in the Ω-spectrum for MU [RW74] and a comparison
between Dyer–Lashof operations and the tom Dieck–Quillen power operations in MU -
cohomology. The relevant portion of this extension is ultimately determined by the

8



calculation of Johnson–Noel discussed earlier [JN10]. We will make extensive use of
the results of Bruner–May–McClure–Steinberger in doing this calculation [BMMS86].

We will then give an alternative description of this operation in the MU -dual Steen-
rod algebra as a Dyer–Lashof operation applied to the result of a secondary operation.
This allows us to use juggling formulas for secondary operations to determine a more
complicated secondary operation in the dual Steenrod algebra, showing that H∗BP is
not closed under secondary operations. (We are fortunate in this regard that most of
our calculations can be carried out mod decomposable elements.) In order to work
with this we will describe a framework for secondary operations in Section 2 based on
Harper’s book [Har02], with our emphasis shifted from suspension and loop operators
to loops inside mapping spaces.

1.5 Terminology
The notation Map always denotes a space, or simplicial set, of maps. We will refer
to a diagram as homotopy commutative if it commutes in the homotopy category,
and homotopy coherent if we have further chosen compatible homotopies and higher
homotopies to recover a coherent diagram [Vog73, Lur09].

We will adhere to the standard conventions for function composition and path
composition, even though they make no sense. Maps in a category are written using
arrows X → Y , and given f : X → Y and д : Y → Z there is a composite д f . Paths in
a space are written using arrows p ⇒ q, and given h : p ⇒ q and k : q ⇒ r there is a
path composite h · k .

Throughout this paper, we will write H∗ (X ;R) for the homology groups of X with
coe�cients in R, and similarly for cohomology. If R is not speci�ed, we view these as
being taken with coe�cients in a �xed �nite �eld Fp of prime order. Homology and
cohomology groups of spaces are unreduced unless otherwise speci�ed.

When X is a spectrum, πn (X ) always denotes the set of maps Sn → X in the stable
homotopy category.

We will let MU be the complex cobordism spectrum and F be the formal group
law of MU , writing it as F (x ,y) = x +F y =

∑
ai, jx

iy j with ai, j ∈ π2(i+j−1)MU .

1.6 Framework
We are in the position that we require tools from both classical and modern frameworks.

In Section 2, we will require highly structured categories of algebras, well-behaved
adjunctions between them, relative smash products, and the like. To our knowledge,
the only literature that accommodate our needs for En-algebras is due to Elmendor�–
Mandell [EM06], which works in the category of symmetric spectra of with the positive
stable model structure [HSS00, MMSS01]. We will use the term commutative ring
spectrum for a commutative monoid in symmetric spectra, and the term En-algebra
for an algebra over a �xed En-operad in simplicial sets—for this it is convenient to
use the E∞-operad of Barratt–Eccles [BE74] with its �ltration by En-suboperads due
to Berger [Ber97]. In this framework, Elmendorf–Mandell show that each category
of En-algebras is a simplicial model category. Form ≤ n, the forgetful functors from
En-algebras to Em-algebras or to symmetric spectra are right Quillen functors, and
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there is a Quillen equivalence between E∞-algebras and commutative ring spectra
[EM06, 1.3, 1.4].

In Section 3 and beyond, where we are calculating with MU and the dual Steen-
rod algebra, we require classical results: particularly results of Cohen–Lada–May
[CLM76], May–Quinn–Ray [May77], Bruner–May–McClure–Steinberger [BMMS86],
and Ravenel–Wilson [RW74]. All of these results rest on the interaction between
a (possibly highly structured) ring spectrum E and the spaces En in an Ω-spectrum
representing it, an item not immediately available in the positive stable model struc-
ture. Most of these references use more classical categories of spectra, such as those
from [LMSM86]. In particular, comparisons are easiest to draw to the S-modules of
[EKMM97], and these all have homotopically equivalent notions of commutative ring
spectra as shown in [MMSS01]. This gives us a path to show that operations and rela-
tions between them that we construct in Section 2 can be related to our calculations.
(We do not mean to assert that the constructions in Section 2 cannot be carried out
within S-modules. To our knowledge, ours is the shortest path without the hard work
involved in creating an equivalent of [EM06].)
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2 Secondary operations
A secondary composite is the �rst basic type of obstruction encountered when lifting
a homotopy commutative diagram to a homotopy coherent diagram.

De�nition 2.0.1. Let D be a category enriched in spaces. Suppose that we are given
the following data:

1. a sequence (X0,X1,X2,X3) of objects of D,

2. maps fi j : Xi → X j for i < j, and

3. paths hi jk : fjk fi j ⇒ fik in MapD (Xi ,Xk ) for i < j < k .

Then the associated secondary composite is the element of π1 (MapD (X0,X3), f03) rep-
resented by the path composite

(h023)
−1 · ( f23h012)

−1 · (h123 f01) · h013,

10



viewed as a loop based at f03.

f03
h−1023 +3 f23 f02

f23h−1012
��

f13 f01

h013

KS

f23 f12 f01h123f01
ks

(In Remark 2.1.9 we will discuss a quasicategorical expression of this data.)
In the following sections we will describe secondary composites which are compara-

ble with Massey products or Toda brackets; they rely on the existence of distinguished
“null” maps so that we can make sense of composites being trivial. Our perspective is
based on Harper’s book [Har02].

2.1 Secondary operations and brackets
Throughout this section, let C be a category enriched in pointed spaces (or, with
appropriate modi�cations, pointed simplicial sets) under ∧, and write MapC (x ,y) for
the mapping space between any pair of objects of C. We refer to the basepoint of this
mapping space as the null map or ∗; null maps satisfy f ∗ = ∗f = ∗ for any f .4

De�nition 2.1.1. Suppose we have maps

X0
f
−→ X1

д
−→ X2

in C. A tethering of this composite is a homotopy class of nullhomotopy of д f : a
homotopy class of path h : д f ⇒ ∗ in MapC (X0,X2) (cf. [Har02, 4.1.2]). We will write
д

h
! f to indicate such a tethering, and д ! f to indicate that there is a chosen

tethering which is either implicit or not important to name.

Remark 2.1.2. If a triple composite kд f is nullhomotopic, then a tethering kд
h
! f is

the same data as a tethering k
h
! д f .

De�nition 2.1.3. Suppose we have maps

X0
f01
−−→ X1

f12
−−→ X2

f23
−−→ X3,

and tetherings f23
h123
! f12

h012
! f01. Then we de�ne the element

〈f23
h123
! f12

h012
! f01〉 ∈ π1 (MapC (X0,X3), ∗)

to be the path composite ( f23h012)
−1 · h123 f01 obtained by gluing together the two

nullhomotopies f23 f12 f01 ⇒ ∗. This is the secondary composite, as in De�nition 2.0.1,
obtained by choosing f02 = f03 = f13 = ∗ and the trivial nullhomotopies h013 and h023.

4Strictly speaking, the smash product on pointed spaces is nonassociative and so does not give rise to a
monoidal category [MS, §1.7]. We really mean that we are working in an appropriate “convenient category,”
such as compactly generated spaces.
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De�nition 2.1.4. Suppose we have maps

X0
f01
−−→ X1

f12
−−→ X2

f23
−−→ X3.

If we have chosen a tethering f23
h
! f12 and f12 f01 is nullhomotopic, we write

〈f23
h
! f12, f01〉 ⊂ π1 (MapC (X0,X3), ∗)

for the set of all elements 〈f23
h
! f12

k
! f01〉 as k ranges over possible tetherings, and

refer to 〈f23
h
! f12,−〉 as the secondary operation determined by the tethering. The set

of maps f01 such that f12 f01 is nullhomotopic is referred to as the domain of de�nition
of this secondary operation, and the possibly multivalued nature of this function as
the indeterminacy of the secondary operation.

The secondary operations 〈−, f12! f01〉 are de�ned in the same way.

De�nition 2.1.5. Suppose we have maps

X0
f01
−−→ X1

f12
−−→ X2

f23
−−→ X3

such that the double composites f23 f12 and f12 f01 are nullhomotopic. We de�ne the
subset

〈f23, f12, f01〉 ⊂ π1 (MapC (X0,X3), ∗),

or bracket, to be the set of all secondary composites 〈f23! f12! f01〉.

Proposition 2.1.6. Changing the tethering and homotopy class of maps alters the value
of a secondary composite by multiplication by loops, as follows. If f23 is homotopic to f ′23,
we have

〈f23
h
! f12

k
! f01〉 = 〈f

′
23

h′
! f12

k
! f01〉 · (u f01)

for some u ∈ π1 MapC (X1,X3) that is determined by h, h′, and a homotopy between f23
and f ′23. Similarly, if f01 is homotopic to f ′01, we have

〈f23
h
! f12

k
! f01〉 = ( f23v ) · 〈f23

h
! f12

k ′
! f ′01〉

for some v ∈ π1 MapC (X0,X2).
If we replace all three maps with homotopic maps and choose new tetherings, we have

〈f23
h
! f12

k
! f01〉 = ( f23v ) · 〈f

′
23

h′
! f ′12

k ′
! f ′01〉 · (u f01)

for some u ∈ π1 MapC (X1,X3) and v ∈ π1 MapC (X0,X2).

In particular, this describes completely the indeterminacy in secondary operations
and brackets, and shows that (up to this indeterminacy) a secondary operation or a
bracket is well-de�ned on homotopy classes of maps.

12



Proof. We will prove the �rst identi�cation, as the second is symmetric. Since f23 and
f ′23 are homotopic, there is a path j : f23 ⇒ f ′23 in MapC (X2,X3). The composition

jk : ∆1 × ∆1 j×k
−−−→ MapC (X2,X3) ×MapC (X0,X2) → MapC (X0,X3)

determines a homotopy from f23k to (j f12 f01) · ( f
′
23k ), making them equal in the

fundamental groupoid of MapC (X0,X3).
In this fundamental groupoid, we then have the following sequence of identities:

〈f23
h
! f12

k
! f01〉 = ( f23k )

−1 · (hf01)

= ( f ′23k )
−1 · (j f12 f01)

−1 · (hf01)

= ( f ′23k )
−1 · (h′ f01) · (h

′ f01)
−1 · (j f12 f01)

−1 · (hf01)

= 〈f ′23
h′
! f12

k
! f01〉 · [(j f12 · h′)−1 · h]f01

Letting u = (j f12 · h
′)−1 · h ∈ π1 MapC (X0,X2) gives the desired result. �

Corollary 2.1.7. A secondary operation 〈f23
h
! f12,−〉 determines a well-de�ned map

Φ on ker f12 ⊂ π0 MapC (X0,X1) whose values are right cosets:

ker f12
Φ
−→ ( f23π1 MapC (X0,X2))

∖
π1 MapC (X0,X3).

If two tetherings h, h′ give rise to operations Φ, Φ′, then there exists an element u ∈
π1 MapC (X1,X3) such that

Φx = Φ′x · (ux )

for all x ∈ ker f12 ⊂ π0 MapC (X0,X1).
Dual results hold for 〈−, f12! f01〉.

Corollary 2.1.8. Suppose we have maps

X0
f01
−−→ X1

f12
−−→ X2

f23
−−→ X3

such that the double composites f23 f12 and f12 f01 are nullhomotopic. Then the bracket
〈f23, f12, f01〉 depends only on the homotopy classes of fi,i+1 and is a well-de�ned double
coset in

( f23π1 MapC (X0,X2))
∖
π1 MapC (X0,X3)

/
(π1 MapC (X1,X3) f01).

Remark 2.1.9. A more �exible version of the above constructions should exist, where
basepoints are replaced by some appropriate system of maps Ei, j → MapC (Xi ,X j )
from contractible spaces Ei, j , together with appropriate lifts of the composition maps.
For example, the category of diagrams of spaces E → X is a monoidal category
under the pushout-product, and so we could ask for C to be enriched in this category
with the constraint that the space E is always contractible. We might instead try to
�nd an appropriate analogue in terms of quasicategories satisfying certain basepoint

13



conditions: in the notation of [Lur09], the data to describe a secondary composite in
De�nition 2.0.1 de�nes a map of enriched categories C[∂∆3]→ D, and the secondary
composite is the obstruction to extending it to a mapC[∆3]→ D (a homotopy coherent
triple composite). Both of these constructions would apply more widely, but involve
more bookkeeping and possibly require a more advanced technical framework. We
have elected to use constructions in categories where this will not be necessary in
order to minimize the technical load.

The de�nitions of secondary operations and brackets are preserved in an obvious
way under functors between enriched categories.

Proposition 2.1.10. Suppose F : C → C′ is an enriched functor between categories

enriched in pointed spaces. Then any tethering д
h
! f in C induces a tethering Fд

Fh
! F f

in C′. We have an equality

F (〈f23
h
! f12

k
! f01〉) = 〈F f23

Fh
! F f12

Fk
! F f01〉,

and we have containments as follows:

F (〈f23
h
! f12, f01〉) ⊂ 〈F f23

Fh
! F f12, F f01〉

F (〈f23, f12
k
! f01〉) ⊂ 〈F f23, F f12

Fk
! F f01〉

F (〈f23, f12, f01〉) ⊂ 〈F f23, F f12, F f01〉

There is a further extension in the case where we have an enriched adjunction. An
example of such a result appears below.

Proposition 2.1.11. Suppose that we have an enriched adjoints F : C → D and
G : D → C, encoded by a natural based homeomorphism

θ : MapC (X ,GY ) � MapC (FX ,Y ).

Given maps

X0
f01
−−→ X1

f12
−−→ X2

д
−→ GY

and tetherings

д
h
! f12

k
! f01,

the map θ induces an identity

θ∗〈д
h
! f12

k
! f01〉 = 〈θд

θh
! F f12

Fk
! F f01〉.

Corollary 2.1.12. There are containments

θ∗〈д, f12
k
! f01〉 ⊂ 〈θд, F f12

Fk
! F f01〉

and
θ∗〈д, f12, f01〉 ⊂ 〈θд, F f12, F f01〉.

14



2.2 Pointings and augmentations
In this section we let D be a category enriched in spaces (now assumed to have no
basepoint). In this section we indicate a construction that replaces D with a category
enriched in pointed spaces.

De�nition 2.2.1. An augmented object ofD is an object X ∈ D equipped with a map
Y → ∅ to an initial object of D. The space of maps between two augmented objects is
the subspace of ordinary maps that commute with the augmentations.

A pointed object of D is an object Z ∈ D equipped with a map ∗ → Z from a
terminal object of D. The space of maps between two pointed objects is the subspace
of ordinary maps that commute with the pointings.

De�nition 2.2.2. Suppose D is a category enriched in spaces. We de�ne D±, the
category of possibly pointed or augmented objects of D, to be the following category
enriched in based spaces.

An object of D± is one of three types:

1. an augmented object X → ∅ of D,

2. an ordinary object Y of D, or

3. a pointed object ∗ → Z of D.

The mapping spaces in D± are given as follows.

1. The space of maps between two augmented objects X → ∅, X ′ → ∅′ is the
space of maps of augmented objects, with basepoint given by the composite
X → ∅ → X ′.

2. The space of maps between two pointed objects ∗ → Z , ∗′ → Z ′ is the space of
maps of pointed objects, with basepoint given by the composite Z → ∗′ → Z ′.

3. The space of maps between two ordinary objects Y ,Y ′ is the based space
MapD (Y ,Y ′)+, whose disjoint basepoint is called the formal null map.

4. The space of maps from an augmented object X → ∅ to an ordinary object Y is
the space of maps X → Y , with basepoint given by the map X → ∅ → Y .

5. The space of maps from an ordinary object Y to a pointed object ∗ → Z is the
space of maps Y → Z , with basepoint given by the map Y → ∗ → Z .

6. The space of maps from an augmented objectX → ∅ to a pointed object ∗ → Z is
the space of maps X → Z , with basepoint given by the canonical map factoring
through either ∅ or ∗ in the commutative diagram

X //

��

∅

~~ ��
∗ // Z .
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7. All other mapping spaces are one-point spaces—there are no non-basepoint maps
from ordinary objects to augmented ones, or from pointed objects to ordinary
ones. We also refer to these as formal null maps.

We have full subcategories of D± spanned by fewer than all three of these types of
objects: for example, we have the categories of augmented objects, pointed objects,
possibly augmented objects, and possibly pointed objects of D.

Proposition 2.2.3. The category D± is enriched in pointed spaces under ∧.
In D±, if a composite X → Y → Z is nullhomotopic then X is augmented, Z is

pointed, or one of the maps is a formal null map (in which case there is a canonical
tethering).

This construction makes it possible to take a category D and sensibly talk about
secondary operations and brackets for a composite X0 → X1 → X2 → X3 in D if the
�rst map is a map of augmented objects, if the last map is a map of pointed objects, or
if the �rst object is augmented and the last object is pointed. (If the maps arise from
D then a formal null map cannot appear.)
Example 2.2.4. If C has homotopy pushouts and we have augmented objects X0 →
X1 → ∅, the bracket can be identi�ed with an element in π0 MapC (ΣX0,X3), repre-
sented by the outside rectangle in the homotopy coherent diagram

X0 //

��

X1 //

��

∅

��
∅ //

⇒

X2 //

⇒

X3.

The indeterminacy in the bracket is given by path concatenation with composites of
either of the following forms:

ΣX0
v // X2

f23 // X3 ΣX0
Σf01 // ΣX1

u // X3

Dual results hold if we are given pointed objects ∗ → X2 → X3, so that the bracket
can be identi�ed with an element in π0 MapC (X0,ΩX3). To avoid grief in these identi-
�cations, especially with respect to a loop-suspension adjunction, it is important to
pay attention to the orientation of S1 as detailed at length in [Har02]. This is why we
have indicated directions for 2-cells.

In the “mixed” case, there is little profound that we can say other than identi�cation
of a element in the bracket with the loop determined by a homotopy coherent diagram

X0 //

��

X1 //

��

∗

��
∅ //

⇒

X2 //

⇒

X3.
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2.3 Juggling and Peterson–Stein formulas
In this section we return to assuming that we have a category C enriched in based
spaces.

There are several “juggling” formulas that describe the relationship between brack-
ets and function composition. All of them are obtained by choosing representative
nullhomotopies and composing them appropriately, as in the Peterson–Stein formulas
[PS59].
Lemma 2.3.1. Suppose we have a sequence of objects (X0, . . . ,X4), together with maps
fi,i+1 : Xi → Xi+1 and tetherings

f34! f23! f12! f01.

Then there is an identity

f34〈f23! f12! f01〉
−1 = 〈f34! f23! f12〉f01

in π1 MapC (X0,X4).

Example 2.3.2. In the case where X2 → X3 → X4 are maps of pointed objects in a
category D, this Peterson–Stein relation expresses that both loops in MapD± (X0,X4)
are homotopic to the loop determined by the following homotopy coherent diagram:

X0 //

��

∗

��
X1

��

//

⇒

X2 //

��

∗

��
∗

⇒

// X3 //

⇒

X4

Similarly, in the mixed case we will need to derive Peterson–Stein relations from
diagrams such as the following:

X0 //

��

∅

��   
X1

��

//

⇒

X2 //

��

∗

��
∅

⇒

// X3 //

⇒

X4

Lemma 2.3.3. Each of the following juggling formulas holds whenever de�ned.

f34〈f23
h
! f12

k
! f01〉 = 〈f34 f23

f34h
! f12

k
! f01〉

〈f34 f23
h
! f12

k
! f01〉 = 〈f34

h
! f23 f12

f23k
! f01〉

〈f34
hf12
! f23 f12

k
! f01〉 = 〈f34

h
! f23

k
! f12 f01〉

〈f34
h
! f23

kf01
! f12 f01〉 = 〈f34

h
! f23

k
! f12〉f01
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As we range over possible choices of tethering, these lemmas expressing equality
of secondary composites become containment relations for secondary operations and
brackets.

Proposition 2.3.4. Each of the following juggling formulas for secondary operations
holds whenever both sides are de�ned:

〈f4! f3, f2〉f1 = f4〈f3, f2, f1〉
−1

f4〈f3
h
! f2, f1〉 = 〈f4 f3

f4h
! f2, f1〉

〈f4 f3
h
! f2, f1〉 ⊂ 〈f4

h
! f3 f2, f1〉

〈f4
hf2
! f3 f2, f1〉 = 〈f4

h
! f3, f2 f1〉

〈f4
h
! f3, f2 f1〉 ⊃ 〈f4

h
! f3, f2〉f1

Dual results hold for secondary operations 〈−, f2! f1〉.

Proof. We will give the argument for the �rst statement, as the others are similar but
less complex. Given �xed tetherings f4

h
! f3

k
! f2

`
! f1, we �nd that the left-hand

side consists of elements of the following form:

〈f4
h
! f3

k ′
! f2〉f1 =

[
( f4v ) · 〈f2

h
! f3

k
! f2〉

]
f1

= ( f4v f1) · 〈f2
h
! f3

k
! f2〉f1

The right-hand side consists of elements of the following form:

f4〈f3
k ′
! f2

`′

! f1〉
−1 = f4

[
( f3w ) · 〈f2

h
! f3

k
! f2〉 · (u f1)

]−1

= f4

[
(u−1 f1) · 〈f2

h
! f3

k
! f2〉

−1 · ( f3w
−1)

]

= ( f4u
−1 f1) · f4〈f2

h
! f3

k
! f2〉

−1 · ( f4 f3w
−1)

However, f4 f3w−1 is always trivial because f4 f3 is nullhomotopic, and so the two sets
coincide by Lemma 2.3.1. �

Proposition 2.3.5. Each of the following juggling formulas for brackets holds whenever
both sides are de�ned:

〈f4, f3, f2〉f1 = f4〈f3, f2, f1〉
−1

f4〈f3, f2, f1〉 ⊂ 〈f4 f3, f2, f1〉

〈f4 f3, f2, f1〉 ⊂ 〈f4, f3 f2, f1〉

〈f4, f3 f2, f1〉 ⊃ 〈f4, f3, f2 f1〉

〈f4, f3, f2 f1〉 ⊃ 〈f4, f3, f2〉f1

18



We end with a remark on adjunctions. In the presence of an (enriched) adjunc-
tion between categories C and D, we can describe relationships between secondary
operations. Recall that an enriched functor F : C → D with enriched left adjointG de-
termines (and is determined by) an enriched category E with object setOb (C)∪Ob (D),
such that:

MapE (x ,y) =




MapC (x ,y) if x ,y ∈ C
MapD (x ,y) if x ,y ∈ D
MapC (x ,Gy) � MapD (Fx ,y) if x ∈ C,y ∈ D
∅ otherwise

This allows us to describe augmented and pointed objects in the presence of an adjunc-
tion and de�ne brackets even amongst objects in categories related by adjunctions.
We could, if desired, rephrase several of our constructions in these terms, in particular
with respect to brackets that involve maps out of free objects.

2.4 Additive structures
In prominent examples, some of the mapping spaces in C have natural “addition”
structures.

De�nition 2.4.1. An object Y ∈ C is an H-object if MapC (−,Y ) naturally takes values
in H -spaces: it is equipped with a natural homotopy-unital binary operation + whose
unit is the basepoint. A map of H-objects is a map Y → Y ′ preserving this structure.

An objectX ∈ C is an co-H-object if MapC (X ,−) naturally takes values inH -spaces:
it is equipped with a natural homotopy-unital binary operation + whose unit is the
basepoint. A map of co-H-objects is a map X → X ′ preserving this structure.

Proposition 2.4.2. Suppose X is a co-H-object in C and that we have maps f , f ′ : X →
Y and д : Y → Z , together with tetherings д

h
! f and д

h′
! f ′. Then the pointwise

product on paths in MapC (X ,−) gives a tethering д
h+h′
! ( f + f ′).

Proposition 2.4.3. Each of the following addition formulas holds whenever both sides
are de�ned and the source object is an co-H-object in C:

〈f3
h
! f2

k+k ′
! ( f1 + f ′1 )〉 = 〈f3

h
! f2

k
! f1〉 + 〈f3

h
! f2

k ′
! f ′1 〉

〈f3
h
! f2, ( f1 + f ′1 )〉 = 〈f3

h
! f2, f1〉 + 〈f3

h
! f2, f

′
1 〉

〈f3, f2, ( f1 + f ′1 )〉 ⊂ 〈f3, f2, f1〉 + 〈f3, f2, f
′
1 〉

Dual results hold for H -objects.

Here the addition on paths is the pointwise H -space structure. The addition
on π1 MapC (X0,X3) is, by the Eckmann–Hilton argument, equivalent to either path
concatenation or the pointwise H -space structure on paths, and makes this group
abelian.

19



Proof. The �rst identity is expressed by the following interaction between path com-
position and the pointwise H -space structure:

[f3 (k + k ′)]−1 · [h( f1 + f ′1 )] = [( f3k )−1 + ( f3k
′)−1] · [hf1 + hf ′1 ]

= [( f3k )−1 · hf1] + [( f3k ′)−1 · hf ′1 ]

Letting k and k ′ vary over possible tetherings, this then shows that

〈f3
h
! f2, ( f1 + f ′1 )〉 ⊃ 〈f3

h
! f2, f1〉 + 〈f3

h
! f2, f

′
1 〉.

The indeterminacy on the left-hand side consists precisely of adding elements of the
form f3u, while on the right-hand side it consists of adding elements of the form
f3v+ f3v

′ = f3 (v+v
′). Because the indeterminacy group is the same, this containment

must be an equality of cosets.
Now letting h vary over possible tetherings (which produces a restricted set of

elements on the right-hand side), we obtain the third identity. �

2.5 Model categories
Working in a model category often requires attention to objects that are not co�brant
or �brant, and function spaces for such objects are poorly behaved. In this section we
will spell out adjustments to the construction of secondary operations which are more
convenient but equivalent to our standard construction.

LetM be a model category. Associated to this data there is a hammock localization
LHM [DK80a]. This is a simplicial category with a functorM → LHM, bijective on
objects, that turns weak equivalences into homotopy equivalences. In [DK80b] it is
shown that LHM recovers the homotopy theory ofM: it is invariant under Quillen
equivalence, the homotopy category of LHM is localization of M with respect to
weak equivalences, and ifM is a simplicial model category there is a chain of weak
equivalences between LHM and the simplicial category of co�brant-�brant objects of
M.

With this in mind, for (possibly pointed or augmented) objects of M it makes
sense to calculate secondary composites and brackets in eitherM or LHM. There are
natural maps

πk MapM (X ,Y ) → πk MapM (Xcof ,Yf ib ) � πk MapLHM (X ,Y ),

where the �rst is an isomorphism if X is co�brant and Y is �brant. This natural map is
compatible with function composition.

This means that a tethering, secondary composite, secondary operation, or bracket
in M determines a compatible one in LHM. This use of LHM then allows us to
discuss brackets, and identities between them, for maps in the homotopy category
ofM without the inconvenience of using co�brant or �brant replacements to obtain
maps inM. When discussing secondary composites inM, we will regard this process
as implicit.
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2.6 Secondary power operations
The study of secondary operations can now be specialized to homotopy operations for
algebras over a �xed commutative ring spectrum A.

De�nition 2.6.1. Given a commutative ring spectrum A, we let PEnA be the left adjoint
to the forgetful functor from En A-algebras to spectra; if n = ∞ we simply write PA,
and if A = S then we will omit A from the notation.

In particular, there is an isomorphism

PEnA (X ) �
∨

A∧

(
En (k )+ ∧

Σk
X∧k

)
,

where the spaces En (k ) are the terms in our chosen En-operad, and the set of homotopy
classes of maps of En A-algebras PEnA (∨Ski ) → C is naturally isomorphic to ∏

πkiC .
The natural map X → ∗ becomes a natural augmentation PEnA (X ) → A, and a pinch
map X → X ∨ X gives PEnA (X ) the structure of a co-H-object.

De�nition 2.6.2. A homotopy operation on En A-algebras is a natural transformation
of functors ∏

πki (−) → πj (−),

represented by a homotopy class of map of En A-algebras

PEnA (S j ) → PEnA (∨Ski )

or equivalently an element of

πjP
En
A (∨Ski ) � πj (A∧P

En (∨Skk ))

If this operation preserves the zero element, we view it as determined by a map of
augmented objects via the canonical projection to A; if it preserves addition, we view
it as determined by a map of co-H-objects.

Similarly, if B is an En A-algebra, a homotopy operation on En A-algebras under
B is a natural transformation in the homotopy category of En A-algebras under B,
represented by a homotopy class of map

B q PEnA (S j ) → B q PEnA (∨Ski ).

Here the coproduct q takes place in the category of En-algebras. If this operation
preserves the zero element, we view it as determined by a map of augmented objects
via the canonical projection to B; if it preserves addition, we view it as determined by
a map of co-H-objects.

Taking B = A shows that the �rst type of operations are a special case of the
second, so there is no loss of generality in restricting our attention to operations in
the relative case. If n = ∞, then conversely E∞ A-algebras under B are equivalent to
E∞ B-algebras.
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Example 2.6.3. For any b ∈ πk (B) and any n > 0, multiplication by b determines an
additive homotopy operation on En A-algebras under B.
Remark 2.6.4. As above, the Yoneda lemma allows homotopy operations to be expressed
as pre-composition with maps of free algebras. We usually write precomposition on
the right, but this is at odds with the standard convention of writing operators (such as
the Dyer–Lashof operations) on the left. We could attempt to solve this in many ways.
One would be to work in an opposite category so that function application is on the
right. One would be to notationally distinguish between maps between free algebras
(operations), maps from free algebras to ordinary algebras (homotopy elements), and
maps between ordinary algebras (maps). One is to accept the state of a�airs, and
resist the urge to use the same names for a Dyer–Lashof operation Qn and the map
PH (S

j+n ) → PH (S
j ) that represents it. None of these solutions are good, but we have

adopted the third because (in all honesty) it has confused us the least.
Relations between homotopy operations allow us to de�ne secondary operations

in the following way.

De�nition 2.6.5. Let A be a commutative ring spectrum and B an En A-algebra.
Suppose we have homotopy operations Qi :

∏
s πli,s → πki and R : ∏

i πki → πj that
preserve zero such that R ◦ (∏i Qi ) = 0, realized by a homotopy coherent diagram

B q PEnA (S j )
R //

��

B q PEnA (∨iS
ki )

Q
��

B //

⇒

B q PEnA (∨i,sS
li,s )

of augmented En A-algebras under B. We refer to R as a relation between the operations
Qi . The coherence produces a tethering homotopy h, and the secondary operation

associated to this relation is 〈−,Q h
! R〉.

Proposition 2.6.6. Given C any En A-algebra under B, the domain of de�nition of the

secondary operation 〈−,Q
h
! R〉 is the subset of

∏
πli,sC of collections of elements xi,s ∈

πli,sC such that Qi (xi,s ) = 0 for all i . These are represented by homotopy commutative
diagrams

B q PEnA (∨iS
ki )

Qi

��

// B

��
B q PEnA (∨i,sS

li,s ) xi,s
// C

of En A-algebras under B. The value of 〈−,Q
h
! R〉 is a subset of πj+1C , and the

indeterminacy consists of adding elements in the image of the suspended operation
σR : ∏

πki+1C → πj+1C .

Proposition 2.6.7. Maps f : C → D of En A-algebras under B preserve secondary
operations.
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Proof. This is the statement that

f (〈x ,Q ! R〉) ⊂ 〈f (x ),Q ! R〉,

which is an application of the juggling formulas from Proposition 2.3.4. �

Remark 2.6.8. If n < m ≤ ∞, then the forgetful functors from Em A-algebras under B
to En A-algebras under B also preserve secondary operations in the following sense.
The forgetful functor U from Em A-algebras under B to En-algebras under B has a left
adjoint F , giving rise to an enriched adjunction. Since adjoints are preserved under
composition, it preserves free objects:

F
(
B q PEnA (X )

)
� B q PEmA (X ).

In particular, any homotopy operation

Q : B q PEnA (S j ) → B q PEnA (∨iS
ki )

for En A-algebras under B gives rise to a homotopy operation for Em A-algebras under
B, de�ned by applying FQ or, equivalently, by applying U and then applying Q . By
Corollary 2.1.12, the enriched adjunction gives us canonical identi�cations

〈U−,Q
h
! R〉En = 〈−, FQ

Fh
! FR〉Em

showing that secondary operations are preserved by the forgetful functor.
We can also de�ne functional homotopy operations as the analogues of Steenrod’s

functional cohomology operations.
De�nition 2.6.9. Suppose A is a commutative ring spectrum and that we have maps
B → C

f
−→ D of En A-algebras, making f : C → D a map under B. Suppose that we

have a homotopy operationQ : ∏
s πls → πk for En A-algebras under B that preserves

zero, realized by a commutative diagram

B q PEnA (Sk )
Q //

((

B q PEnA (∨sS
ls )

��
B.

The functional homotopy operation associated to this relation is the bracket 〈f ,−,Q〉.

Proposition 2.6.10. For any maps of En A-algebras B → C
f
−→ D, the domain of

de�nition of the functional operation 〈f ,−,Q〉 is the subset of
∏
πlsC of collections of

elements xs ∈ πlsC such that f (xs ) = 0 and Q (xs ) = 0. These are represented by
homotopy commutative diagrams

B q PEnA (Sk )
Q //

��

B q PEnA (∨sS
ls )

xs
��

// B

��
B // C

f
// D
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of En A-algebras. The value of 〈f ,−,Q〉 is a subset of πk+1D, and the indeterminacy
consists of adding elements in the image of the suspended operation σQ : ∏

πls+1D →
πk+1D and elements in the image of f : πk+1C → πk+1D.

We now specialize the previous discussion to the category of En-algebras over the
mod-2 Eilenberg-Mac Lane spectrum H . As in Example 2.6.3, multiplication is one
classical example of a homotopy operation. Other examples of homotopy operations,
and relations between them, are furnished by power operations.

Theorem 2.6.11 ([BMMS86, III.3]). For any commutative H -algebra A, there are ho-
motopy operations

Qs : πk → πk+s

for En A-algebras when s < k + n − 1. These satisfy the following relations.

1. The additivity relation: Qs (x + y) = Qs (x ) +Qs (y)

2. The instability relations: Qsx = x2 when |x | = s , Qsx = 0 when |x | > s

3. The Cartan formula: Qs (xy) =
∑
p+q=s Q

p (x )Qq (y)

4. The Adem relations: If r > 2s , QrQs (x ) =
∑ (

i−s−1
2i−r

)
Qr+s−iQ i

Form ≤ n, the forgetful map from En-algebras to Em-algebras preserves Dyer–Lashof
operations.

Proposition 2.6.12. For any commutative H -algebra A, all homotopy operations for
E∞ A-algebras C are composites of the following types:

1. the constant operation associated to an element α ∈ πnA, which takes no arguments
and whose value on C is the image of α under the map π∗A→ π∗C ;

2. the Dyer–Lashof operations Qs : πn (C ) → πn+s (C );

3. the binary addition operations πn (C ) × πn (C ) → πn (C );

4. the binary multiplication operations πn (C ) × πm (C ) → πn+m (C ).

Proof. The set of homotopy operations ∏
s πls → π∗ in this category is isomorphic to

π∗ (A∧P(∨sS
ls )) � π∗A⊗H∗P(∨sS

ls ).

Therefore, any homotopy operation is a sum of homotopy operations for H -algebras
multiplied by constants from π∗A. However, in [BMMS86, IX.2.1] it is shown that
the homology H∗P(X ) is the free commutative algebra with Dyer–Lashof operations
(subject to the additivity formula, instability relations, Cartan formula, and Adem
relations) on H∗X , and so the homotopy operations for H -algebras are generated by
constants, addition, multiplication, and the Dyer–Lashof operations Qs . �

The category of En A-algbras under B has suspensions, and the suspension of the
augmented object B q PEnA (∨sS

ls ) is B q PEnA (∨sS
ls+1)
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Proposition 2.6.13. The suspension operator σ , on homotopy operations for En A-
algebras under B, takes zero-preserving homotopy operations

∏
πls → πk to homotopy

operations
∏
πls+1 → πk+1. Suspension preserves addition, composition, and multiplica-

tion by scalars from B. Suspension also takesQs toQs and takes the binary multiplication
operation πp × πq → πp+q to the trivial operation.

Remark 2.6.14. For En H -algebras, there is also a “top” operation ξn−1 which, if C
extends to an En+1-algebra, agrees with to Qk+n−1 on classes in πkC . However, the top
operation satis�es less tractable versions of the identities enjoyed by the remaining
operations—most prominently, additivity requires correction by a new binary operation
called the Browder bracket [BMMS86, III.3.3].

2.7 Spectra and geometric realization

For the following, we note that a tethering of a composite map of spectra X
f
−→ Y

д
−→ Z

is equivalent to a homotopy class of extension from the mapping cone C f to Z , up to
orientation for the interval component of the mapping cone.

Proposition 2.7.1. Suppose X , Y , and Z are spectra, X
f
−→ Y

д
−→ Z is nullhomotopic,

and that α ∈ ker( f ) ⊂ πn (X ) is represented by a map Sn → X . Given any extension

Y → C f
h
−→ Z from the mapping cone representing a tethering, the secondary operation

〈д! f ,α〉 is (up to sign) the set h(∂−1α ), where ∂ : πn+1C f → πnX is the connecting
homomorphism in the long exact sequence of homotopy groups.

Corollary 2.7.2. Suppose that X? is a simplicial spectrum with geometric realization

|X? | and that F is the homotopy �ber in the sequence F
j
−→ X1

d0
−−→ X0. Then the composite

F
d1 j
−−→ X0

i
−→ |X? | has a canonical tethering. If α ∈ πn (F ) ⊂ πnX1 is in the kernel of d1,

then in the geometric realization spectral sequence

Hp (πqX?) ⇒ πp+q |X? |

the secondary operation 〈i ! d1j,α〉 is represented (up to sign) by the element [α] ∈
H1 (πnX?) in the spectral sequence.

Proof. The 1-skeleton of |X? |, by de�nition, has a canonical diagram

X1 ∨ X1 //

d0∨d1
��

X1 ∧[0, 1]+

��
X0 // sk (1) |X? |.

This de�nes a homotopy between the maps id0 and id1. The map d0j has a canonical
nullhomotopy by de�nition, and composing these two homotopies gives a canonical
tethering

i (d1j ) ⇒ i (d0j ) ⇒ ∗
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of i (d1j ). In particular, there is a canonical mapCj → sk (1) |X? | from the mapping cone
of j to the 1-skeleton of the geometric realization; by more carefully understanding
the degeneracies, we can show that this map is a homotopy equivalence.

By Proposition 2.7.3, in the resulting long exact sequence

. . . πn+1X0
i
−→ πn+1sk

(1) |X? |
∂
−→ πnF

d1 j
−−→ πnX0

i
−→ . . . ,

anyα ∈ πn (F ) which maps to zero underd1j has a bracket 〈i ! d1j,α〉 inπn+1sk (n+1) |X? |,
represented by any lift of α ∈ πnF , with indeterminacy given by the image of i .

The spectral sequence for the homotopy groups of the geometric realization |X? |

is the spectral sequence associated to the following (unrolled) exact couple:

∗ // π∗sk (0) |X? | //

��

π∗sk
(1) |X? | //

��

. . .

π∗sk
(0)

cc

π∗sk
(1)/sk (0)

gg

Identifying the 0-skeleton with X0 and the next layer with the suspension of F , we
obtain our desired identi�cation of the element in the E1-term with α . �

We will now specialize to discuss how certain elements in a Künneth spectral
sequence can be identi�ed with the results of secondary operations.

Proposition 2.7.3. Suppose f : R → S is a map of commutative ring spectra, and let
i = 1∧ f : S ∧R → S ∧ S . Then, in the (pointed) category of augmented commutative

S-algebras, there is a canonical tethering p
t
! i for the composite

S ∧R
i
−→ S ∧ S

p
−→ S ∧

R
S .

Let x ∈ πn (S ∧R) map to zero in πn (S ∧ S ), so that σx = 〈p
t
! i,x〉 ⊂ πn+1S ∧R S is

de�ned. Then σx is detected by the image of x under πn (S ∧R) → πn (S ∧R ∧ S ) in the
two-sided bar construction spectral sequence

Hpπq (S ∧R
∧? ∧ S ) ⇒ πp+q (S ∧

R
S ).

Proof. The relative smash product receives a map from the end of the augmented
simplicial bar construction

S ∧R ∧ S //// S ∧ S // S ∧R S,

a diagram of commutative ring spectra. The face maps

dj : S ∧R → S ∧R ∧ S → S ∧ S

are the null map S ∧R → S
ηL
−−→ S ∧ S for j = 0 and the map S ∧R

i
−→ S ∧ S for j = 1.

Because the two composites S ∧R → S ∧R S are homotopic, this provides a canonical
tethering in the category of S-algebras.
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A homotopy element x as described comes from a homotopy coherent diagram as
follows:

Sn //

��

!!

f ib (d1) //

��

∗

��
PSS

n x //

��

⇒

S ∧R //

i
��

⇒

S

��
∗ // S //

⇒

S ∧ S p
//

⇒

S ∧R S

The two lower right-hand squares de�ne the bracket 〈p, i,x〉 in augmented commu-
tative S-algebras, while the outside of the diagram is made up of two large (2-by-2
and 2-by-1) rectangles that are the result of forgetting down to spectra. However, by
Corollary 2.7.2 the outside square determines an element of πn+1 (S ∧R S ) which lifts
to the desired element in the two-sided bar construction spectral sequence. �

Remark 2.7.4. The tethering plays an important role here. If we do not impose that
the tethering p

t
! i comes from a tethering in E∞-algebras, rather than spectra, then

the indeterminacy for the bracket in spectra is too large to determine anything about
bracket in E∞-algebras.

If π∗ (S ∧R) is �at over π∗S , we can identify the E2-term in the two-sided bar
construction spectral sequence:

E2∗∗ = Torπ∗ (S ∧R )∗∗ (π∗ (S ∧ S ),π∗S ) ⇒ π∗

(
S ∧
R
S
)

The element x gives rise to the corresponding element in Tor1,n . In particular, we have
the following result when the target is the mod-2 Eilenberg–Mac Lane spectrum.

Proposition 2.7.5. Suppose R → H is a map of E∞-algebras and x ∈ HnR maps to

zero in the dual Steenrod algebra H∗H . Then there is an element σx = 〈p
t
! i,x〉 in the

R-dual Steenrod algebra π∗ (H ∧R H ) which is detected by the image of x in homological
�ltration 1 of the spectral sequence

TorH∗R∗∗ (H∗,H∗H ) ⇒ π∗

(
H ∧

R
H

)
Proof. In this case, we can rectify the map R → H to a weakly equivalent map between
commutative ring spectra and apply Proposition 2.7.3. �

We now specialize this result to the case where R is the complex bordism spectrum.

Proposition 2.7.6. Let n be an integer which is not of the form 2k − 1 for any k , so that
the corresponding generator bn ∈ H2nMU � F2[b1,b2, . . . ] in mod-2 homology is the
Hurewicz image of the generator xn ∈ π2nMU � Z[x1,x2, . . . ]. Then the diagram of E∞
H -algebras

PH (S
2n )

bn
−−→ H ∧MU

p
−→ H ∧H

i
−→ H ∧

MU
H ,

determines a bracket, and 〈p, i,bn〉 ≡ σxn mod decomposables.
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Proof. The map H∗MU → H∗H is isomorphic to a map of polynomial algebras

F2[b1,b2, . . . ]→ F2[ξ1, ξ2, . . . ]

that sendsb2k−1 to ξ 2k and sends the other generators to zero [Rav86, 3.1.4]. In particular,
the Künneth spectral sequence

TorH∗MU
∗∗ (H∗,H∗H ) ⇒ π∗

(
H ∧

MU
H

)
(2.1)

has as E2-term an exterior algebra Λ[ξk ] ⊗Λ[σbn | k , 2k − 1]. By comparison with
the Künneth spectral sequence

Torπ∗MU
∗∗ (H∗,H∗) ⇒ π∗

(
H ∧

MU
H

)
,

which degenerates and has E2-term Λ[σxk ] of the same (graded) dimension, we �nd
that spectral sequence (2.1) degenerates and that σbn is congruent to σxn mod decom-
posables for n not of the form 2k − 1. We can then apply Proposition 2.7.5 to identify
σxn as a secondary operation. �

3 Hopf rings

3.1 Background
In this section we will recall some of the work of Ravenel–Wilson on Hopf rings
[RW74].

Let E be a spectrum with a homotopy commutative multiplication and let {En }n∈Z
be an associated Ω-spectrum. Then for any ring R the homology groups H∗ (E?,R)
have the structure of a Hopf ring: they have a coproduct ∆, an additive product #,
and a multiplicative product ◦ satisfying associativity, commutativity, unitality, and
distributivity laws that make them into a graded ring object in coalgebras [RW74,
1.12].5 The constants c ∈ En = π0En give rise to elements [c] ∈ H0 (En ;R) under the
Hurewicz map.

De�nition 3.1.1. Suppose E has a complex orientation x ∈ Ẽ2 (CP∞) realized by a
based map b : CP∞ → E2, and let βi ∈ H2i (CP

∞;R) be dual to the generator t i ∈
H ∗ (CP∞;R) � R[t]. We de�ne the classes bi ∈ H2i (E2;R) to be the images of βi under
f .

Theorem 3.1.2 ([RW74, 4.6, 4.15, 4.20]). Let {MUn } be an Ω-spectrum associated to
complex cobordism. For any ring R and any n ∈ Z, H∗ (MU2n ;R) is, as an algebra under
#, the tensor product of the group algebra Z[π−2nMU ] with a polynomial algebra over R.

The even-degree indecomposables Q#H̃∗ (MU2?;R) under the #-product form a com-
mutative graded ring under ◦, with relations as follows. If we de�ne a formal power series

5Ravenel–Wilson write x ∗ y for the additive product and x ◦ y for the multiplicative product, while
Cohen–Lada–May [CLM76] write xy for the additive product and x # y for the multiplicative product.
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b (s ) =
∑
bis

i and write x +F y =
∑
ai, jx

iy j for the formal group law of MU∗, then we
have the Ravenel–Wilson relations

b (s + t ) =
∑

[ai, j ] ◦ b (s )◦i ◦ b (t )◦j . (3.1)

The ring Q#H̃∗ (MU2?;R) is a quotient of the graded ring

R[bi ] ⊗ MU −2?

by a regular sequence, determined by the Ravenel–Wilson relations. BothQ#H̃∗ (MU2?;R)
and H∗ (MU2?;R) are free over R.

Corollary 3.1.3. For all n and all primes p, we have commutative diagrams of the
following form:

H∗ (MU2n ;Q)

��

H∗ (MU2n ;Z)?oo // //

��

H∗ (MU2n )

��
H∗−2n (MU ;Q) H∗−2n (MU ;Z)?oo // H∗−2n (MU )

3.2 The unstable homology invariant
In the following, for spacesX andY we will �nd it convenient to identifyHom(H∗X ,H∗Y )
with the isomorphic completed tensor product

H∗ (Y ) ⊗̂H
∗ (X ).

Here H∗ (Y ) is discrete, while H ∗ (X ) inherits an inverse limit structure dual to the
�ltration of H∗ (X ) by �nite-dimensional subspaces.

The invariant below, in a slightly di�erent form, appears as the “total unstable
operation” in [Goe99, 10.2] and is credited to Strickland.

De�nition 3.2.1. Let E be a multiplicative generalized cohomology theory represented
by an Ω-spectrum {En }n∈Z. The unstable homology invariant for E-cohomology is the
collection of natural transformations of sets

Λ : En (X ) = [X ,En]→ Hom(H∗X ,H∗En ) � H∗En ⊗̂H
∗ (X ).

Remark 3.2.2. For any α , the element Λ(α ) ∈ Hom(H∗X ,H∗En ) is a coalgebra map
that respects the Steenrod operations. This restriction will not be necessary for us to
take into account here.

The groups H∗En ⊗̂H ∗ (X ) have products # and ◦, each individually induced by the
corresponding product in the Hopf ring and the cup product in H ∗ (X ). Using these,
we can determine how Λ interacts with the ring structure in E-cohomology.

Proposition 3.2.3. The unstable homology invariant Λ satis�es the following formulas:

Λ(x + y) = Λ(x ) # Λ(y)
Λ(xy) = Λ(x ) ◦ Λ(y)

Λ([c]) = [c] ⊗ 1
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More speci�cally, for an element z ∈ Hk (X ) with coproduct ∆z =
∑
z ′ ⊗ z ′′, we have the

identities

Λ(x + y) (z) =
∑

(Λx ) (z ′) # (Λy) (z ′′),

Λ(xy) (z) =
∑

(Λx ) (z ′) ◦ (Λy) (z ′′).

For z ∈ Hk (X ) with augmentation ϵ (z) ∈ Hk (∗) and c ∈ En , we have

Λ([c]) (z) = ϵ (z)[c].

Proof. Given elements x ,y ∈ En (X ), represented by maps X → En , the sum is repre-
sented by the composite

X
∆ // X × X

(x,y ) // En × En
# // En .

Similarly, a product is represented by a composite

X
∆ // X × X

(x,y ) // Ep × Eq
◦ // Ep+q ,

and a constant c ∈ En by a composite

X → ∗
c
−→ En .

The desired identities follow by applying H∗. �

Remark 3.2.4. In particular, for X = CP∞ with mod-p graded cohomology ring Fp[t],
we can view the unstable homology invariant as a map

En (CP∞) → H∗ (En )[[t]].

When E is complex oriented, the orientation class x ∈ E2 (CP∞) is taken to the power
series

Λ(x ) =
∑
i≥0

bit
i ∈ H∗ (E2)[[t]]

(De�nition 3.1.1) denoted by b (t ) in [RW74]. In these terms, Ravenel–Wilson’s identity

b (s + t ) = b (s ) +[F ] b (t ) = #
i, j
[ai, j ] ◦ b (s )◦i ◦ b (t )◦j

is proved by �rst applying Λ to the identity m∗ (t ) =
∑
ai, js

it j in E2 (CP∞ × CP∞) and
then using naturality of Λ to write Λm∗ (t ) =m∗b (t ) = b (s + t ).

While we will not require it, it can be clarifying to examine a “reduced” version of
this invariant, especially in cases where X has a basepoint. We begin by observing
that Λ(α ) − [0] takes values in reduced homology for any α ∈ E∗ (X ).
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De�nition 3.2.5. Let E be a multiplicative generalized cohomology theory represented
by an Ω-spectrum {En }n∈Z. The reduced unstable homology invariant for E-cohomology
is the natural transformation of sets

λ : En (X ) = [X ,En]→ Hom(H∗X , H̃∗En ) � H̃∗ (En ) ⊗̂H
∗ (X )

given by λ(α ) = Λ(α ) − [0].

The identities for the operator Λ translate into ones for λ which are particularly
transparent when taken mod decomposables for #.

Proposition 3.2.6. The reduced unstable homology invariant λ satis�es the following
formulas:

λ(x + y) = λ(x ) + λ(y) + λ(x ) # λ(y)
λ(xy) = λ(x ) ◦ λ(y)

λ([c]) = [c] − [0]

The composite map

E?(X )
λ
−→ H̃∗ (E?) ⊗̂H

∗ (X ) → (Q#H̃∗ (E?)) ⊗̂H
∗ (X )

which reduces mod #-decomposables is a natural homomorphism of graded E?-algebras.

Finally, we consider the case of reduced cohomology.

Proposition 3.2.7. Suppose α ∈ Ẽn (X ) corresponds to a based map X → En . Then the
reduced unstable invariant λ(α ) naturally takes values in H̃∗En ⊗̂ H̃ ∗ (X ).

Proof. There is a restriction map H̃∗En ⊗̂H
∗ (X ) → H̃∗En ⊗ Fp induced by the inclusion

of the basepoint ∗ → X . An element α ∈ En (X ) which restricts to an element
c ∈ En (∗) at the basepoint is sent to the element λ(α ) = Λ(α ) − [0] which restricts to
[c] − [0] ∈ H̃∗En . If the map is based, then c = 0 and so λ(α ) lifts to the tensor with
reduced cohomology. �

3.3 Unit groups
For a ring spectrum E, the space SL1 (E) ⊂ Ω∞E of strict units is the path component
of the multiplicative unit 1 ∈ π0 (E). This construction is functorial in E. If we de�ne
Ẽ0 ⊂ E0 to be the path component of 0, then there is a homotopy equivalence Ẽ0 →
SL1 (E) given by applying [1]#(−). In particular, there are canonical isomorphisms
πk (SL1 (E)) � πk (E) for k > 0 and Hk (SL1 (E)) � Hk (Ẽ0). When E is an E∞-algebra,
the space of units inherits a corresponding structure.

Theorem 3.3.1 ([May77, IV.1.8]). For E an E∞-algebra, the space SL1 (E) has a natural
structure of an in�nite loop space such that the map

Σ∞+ SL1 (E) → E

is a natural map of E∞-algebras.
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Proposition 3.3.2. Suppose E is an E∞-algebra, HR is an Eilenberg-Mac Lane spectrum
for a commutative ring R, and E → HR is a map of E∞-algebras. Then there is a natural
suspension map

σ : SL1 (E) → ΩSL1 (HR ∧
E
HR),

of in�nite loop spaces realizing, for k > 0, the natural map πkE → TorE∗1,k (R,R) in the
Künneth spectral sequence

TorE∗∗∗ (R,R) ⇒ π∗

(
HR ∧

E
HR

)
of [EKMM97, IV.4.1].

Proof. Since SL1 only depends on connective covers, without loss of generality we can
assume that E is connective. We consider the commutative diagram

E //

��

HR

��
HR // HR ∧E HR.

We then apply SL1 to this diagram. The space SL1 (HR) is contractible, so the commu-
tative diagram of in�nite loop spaces

SL1E //

��

SL1 (HR)

��
SL1 (HR) // SL1 (HR ∧E HR)

determines (up to contractible indeterminacy) two nullhomotopies of the diagonal
map as in�nite loop space maps. Gluing these nullhomotopies together gives a map of
in�nite loop spaces

SL1 (E) → ΩSL1

(
HR ∧

E
HR

)
.

To show compatibility with the Künneth spectral sequence, we begin by recalling its
construction. Setting HR = M0, we iteratively �nd �ber sequences Mi+1 → Fi → Mi of
E-modules which are exact on homotopy groups, where Fi ' ∨αΣ

nα E is a free graded
E-module, and smash over E with HR; the resulting long exact sequences assemble into
an exact couple that calculates π∗ (HR ∧E HR) with E2-term the desired Tor-groups.
In particular, we may choose the unit map E → HR as one of the factors in the map
F0 → M0, which gives us a map Σ∞+ SL1 (E) → E → F0.

Let β : Sk → SL1 (E) represent an element in πkSL1 (E) for k > 0, and consider the
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diagram

Σ∞SL1 (E) //

��

��

Σ∞+ SL1 (E) //

��

Σ∞+ SL1 (HR) ' S

��
M1 //

��

F0 //

��

HR

��
Ω(HR ∧E HR) // HR ∧E M1 // HR // HR ∧E HR,

whose rows are �ber sequences and where the dotted arrow is the map induced
by the map σ . The composite map Sk → Σ∞SL1 (E) → M1 represents the element
β ∈ ker(πkE → πkHR), and lifts to a map Sk → F1. The image in πk (HR ∧E F1) is
the element corresponding to β in TorE∗1,k (R,R). However, this also coincides with
the suspension of β under the dotted arrow that uses the two nullhomotopies of
Σ∞SL1 (E) → HR. �

Corollary 3.3.3. For a ring R, there are suspension maps

σ : H̃∗ (SL1 (E);R) → H∗+1 (BSL1E;R) → π∗+1

(
HR ∧

E
HR

)
.

These are natural in maps E → HR of E∞-algebras, and on the Hurewicz image of
π∗BSL1 (E) these are given by the suspension map. When R = F2, this map commutes
with the Dyer–Lashof operations.

Proof. The map SL1 (E) → ΩSL1 (HR ∧E HR) is adjoint to a mapBSL1 (E) → SL1 (HR ∧E HR)
of in�nite loop spaces. We begin with the map of E∞-algebras

Σ∞+ BSL1 (E) → Σ∞+ SL1 (HR ∧
E
HR) → HR ∧

E
HR.

The adjunction between E∞-algebras and E∞ HR-algebras (using the left unit HR →
HR ∧E HR) then produces a natural map

HR ∧BSL1 (E)+ → HR ∧
E
HR

of E∞ HR-algebras realizing our desired map. In particular, if R = F2 this map of
H -algebras commutes with the Dyer–Lashof operations. �

Corollary 3.3.4. In the commutative diagram

H̃∗ (SL1 (MU );Q)

��

H̃∗ (SL1 (MU );Z)?oo // //

��

H̃∗ (SL1 (MU ))

��
π∗+1 (HQ∧MU HQ) π∗+1 (HZ∧MU HZ)?oo // π∗+1 (H ∧MU H ),

where the vertical maps are suspensions, the left-hand horizontal arrows are injective and
the right-hand top horizontal arrow is surjective. In particular, the suspension map in
mod-2 homology is determined by the rational suspension map. In addition, the right-hand
vertical map preserves the Dyer–Lashof operations.
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Proof. The injectivity and surjectivity of the top rows was shown in Corollary 3.1.3.
The injectivity of the bottom-left map follows because the comparison map of Künneth
spectral sequences

Torπ∗MU
∗∗ (Z,Z) → Torπ∗MU

∗∗ (Q,Q)

becomes an inclusion of exterior algebras Λ[σxi ] → Q ⊗Λ[σxi ], and both spec-
tral sequences degenerate at the E2-term. Therefore, the map π∗ (HZ∧MU HZ) →
π∗ (HQ∧MU HQ) is injective. �

We can now examine the properties of the rational suspension map by using the
rational Hopf ring.

Proposition 3.3.5. In the rational Hopf ring, the suspension map

H̃∗ (SL1 (MU );Q) → H∗+1 (HQ ∧
MU

HQ),

in terms of the Ravenel–Wilson basis, is a composite

H̃∗ (SL1 (MU );Q) � Q◦Q#H̃∗ (MU0;Q)/(b2,b3, . . . ) → π∗+1 (HQ ∧
MU

HQ)

that kills #-decomposables, ◦-decomposables, and bi for i > 1, and sends any of the
remaining basis elements [α] ◦ b◦s1 to the suspension class σα in the Künneth spectral
sequence from Proposition 2.7.5.

Proof. There is a commutative diagram of E∞ rings over HQ:

Σ∞+ SL1 (MU ) //

��

HQ∧ SL1 (MU )+

��
MU // HQ∧MU

Applying the natural map H̃∗ (SL1 (−);Q) → HQ∧(−) HQ, we �nd that the suspension
map

H̃∗ (SL1 (MU );Q) → π∗+1 (HQ ∧
MU

HQ) � π∗+1 (HQ ∧
HQ∧MU

HQ)

can be computed as the composite

H̃∗ (SL1 (MU );Q) → H∗ (MU ;Q) → H∗+1 (HQ ∧
MU

HQ).

The �rst map, under the isomorphism [−1] # (−) : H̃∗ (SL1 (MU )) � H̃∗ (M̃U 0), sends
#-decomposables to zero, carries ◦-products to products, and takes the elements bi for
i > 1 to ◦-decomposable elements bi ≡ [ai ] ◦ b◦i1 due to the Ravenel–Wilson relation
(3.1). The second is the suspension map σ , which carries ◦-decomposables to zero. The
element [α] ◦ b◦s1 is the Hurewicz image of α which, by de�nition, is carried to the
suspension σα . �

Taking this together with Corollary 3.3.4, we �nd the following.
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Corollary 3.3.6. The suspension map

H̃∗ (SL1 (MU )) → π∗+1

(
H ∧

MU
H

)
on mod-2 homology, in terms of the Ravenel–Wilson basis, is a composite

H̃∗ (SL1 (MU )) � Q◦Q#H∗ (MU0)/(b2,b3, . . . ) → π∗+1

(
H ∧

MU
H

)
that kills #-decomposables, ◦-decomposables, and bi for i > 1, and sends any of the
remaining elements [α] ◦b◦s1 in the Ravenel–Wilson basis to the suspension class σα from
the Künneth spectral sequence.

Proposition 3.3.7. The suspension map σ on mod-2 homology commutes with Dyer–
Lashof operations.

Proof. This map is the composite

H̃∗ (SL1 (MU )) → H∗+1 (BSL1 (MU )) → π∗+1

(
H ∧

MU
H

)
.

The Dyer–Lashof operations on the homology of in�nite loop spaces are stable, and
hence preserved by the �rst map; the compatibility of the second map is Corollary 3.3.3.

�

4 Power operations

4.1 Power operations in complex oriented theories
In this section we will recall the work from [BMMS86] on power operations in co-
homology theories, and speci�cally results on H 2

∞-algebra structures from [BMMS86,
VIII].

For an E∞ (and hence H∞) ring spectrum E, the E-cohomology of a (based) space
X has natural power operations as follows. Fixm > 0 and write Dm for the extended
power functor given by

Dm (Y ) = (Y∧m )hΣm .

Representing an element α ∈ E0 (X ) as a map α : Σ∞X → E, we form the commutative
diagram

Σ∞DmX
Dmα //

Pm (α )
$$

DmE

��
Σ∞X ∧(BΣm )+

∆

77

Pm (α )
// E,

where the right-hand map is induced by the multiplicative structure on E. In particular,
this produces natural power operations:

Pm : Ẽ0 (X ) → Ẽ0 (DmX )

Pm : Ẽ0 (X ) → Ẽ0 (X ∧(BΣm )+)
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These are multiplicative in an appropriate sense, and by replacingX withX+ we obtain
compatible unbased versions:

Pm : E0 (X ) → E0 ((Xm )hΣm )

Pm : E0 (X ) → E0 (X × BΣm )

Outside degree 0, we cannot draw conclusions which are as strong in general.
Given an element α ∈ Ẽn (X ) represented by a map Σ∞X → E ∧ Sn , we can only de�ne
part of the desired diagram:

Σ∞DmX
Dmα //

Pm (α ) &&

Dm (E ∧ Sn )

?
��

Σ∞X ∧(BΣm )+

77

Pm (α )
// E ∧ Snm

With extra structure on E we can complete this diagram when n is a multiple of
some �xed constant d : this is the case where E is Hd

∞-algebra [BMMS86, I.4]. An
Hd
∞-algebra is an algebra equipped with explicit extra structure maps Dm (E ∧ Sdn ) →

E ∧ Sdmn , multiplicative and compatible across n and m. These allow us to obtain
power operations:

Pm : Ẽdk (X ) → Ẽdmk (DmX )

Pm : Ẽdk (X ) → Ẽdmk (X ∧(BΣm )+)

These are multiplicative, and replacing X with X+ gives compatible unbased versions:

Pm : Edk (X ) → Edmk ((Xm )hΣm )

Pm : Edk (X ) → Edmk (X × BΣm ).

Cohomology is representable, so we may apply the Yoneda lemma. Restricting to
the case wherem is a chosen prime p and d = 2, we get the following.

Theorem 4.1.1. If E is an H 2
∞-algebra, there are natural based and unbased power

operations for n ∈ Z:

P : Ẽ2n (X ) → Ẽ2pn (X ∧(BΣp )+)

P : E2n (X ) → E2pn (X × BΣp )

These are universally represented by maps of based spaces E2n ∧(BΣp )+ → E2pn , and
satisfy P (x )P (y) = P (xy).

For instance, the complex bordism spectrum MU is an H 2
∞-algebra [BMMS86,

VIII.5.1], giving us power operations on even-degree classes previously studied by tom
Dieck and Quillen [tD68, Qui71] that extend the power operations in degree zero. The
spectrum MU , which is complex oriented and has canonical Thom classes for complex
vector bundles, also has the special property that these operations are compatible with
the Thom isomorphism, as described by Quillen.
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Proposition 4.1.2 ([Qui71]). For any complex vector bundle ξ → X of dimension k ,
write t (ξ ) ∈ MU 2k (Th(ξ )) for the canonical Thom class of ξ and e (ξ ) ∈ MU 2k (X+) for
the Euler class.

The based operation Pm preserves Thom classes: we have

Pm (t (ξ )) = t (Dmξ ),

where Dmξ is the extended power bundle over (Xm )hΣm . Restricting along the diagonal,
we have

Pmt (ξ ) = e (ξ � ρ)t (ξ )

where ρ is the bundle on BΣm induced by the reduced permutation representation of Σm
and ξ � ρ is the exterior tensor bundle on X × BΣm . In particular, the Thom isomorphism
�ts into a commutative diagram

MU 2n (X )
Pm //

t (ξ )
��

MU 2mn (X × BΣm )

e (ξ�ρ )t (ξ )
��

M̃U
2(n+k )

(Th(ξ ))
Pm
// M̃U

2m (n+k )
(Th(ξ ) ∧(BΣm )+).

The cohomology of symmetric groups is closely related to formal group law theory
[Qui71], and in particular the e�ect of the power operation P on the canonical �rst
Chern class x ∈ M̃U

2
(CP∞) was determined by Ando [And95].

Theorem 4.1.3. The inclusion Cp ↪→ Σp induces inclusions:

MU ∗ (BΣp ) ↪→MU ∗[[α]]/[p]F (α )
MU ∗ (CP∞ × BΣp ) ↪→MU ∗[[x ,α]]/[p]F (α )

In these coordinates, the power operation P satis�es P (x ) =
∏p−1

i=0 (x +F [i]F (α )).

The power operations P : MU 2k → MU 2pk (BΣp ) are in principle determined by
these results, naturality, and multiplicativity, and are closely related to the Lubin
isogeny in the theory of formal group laws. However, it has been di�cult to obtain
closed-form expressions for these power operations. We will require the following
computation of Johnson–Noel, using the fact that the generator x2 of the complex
cobordism ring in dimension 4 is CP2.

Theorem 4.1.4 ([JN10, 6.3]). The polynomial generator x2 of the complex bordism ring
MU∗ � Z[x1,x2,x3, . . . ], appearing in π4 (MU ), has image

P (x2) ≡ α
2 (v6

1 +v
2
2 ) + α

3 (v7
1 +v3)

inBP∗[[α]]/([2]F (α ),α8), where P is the 2-primary power operation. In particular, P (x2) ≡
x7α

3 mod decomposables and higher order terms in α .

Remark 4.1.5. The powers of α appearing in the above result di�er by a shift from
those in [JN10] because their identity occurs after multiplication by a power of an
Euler class.
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The main result of this paper hinges on this theorem. In Appendix A we will show
that Johnson–Noel’s method can be adapted to one that works in torsion-free quotients
of the Lazard ring. This tweak allows us to give an abbreviated version of their proof
at the prime 2, ignoring decomposables, that is easier to carry out without computer
assistance.

4.2 Unstable Dyer–Lashof operations
We recall the computation of the cohomology of the symmetric group Σp :

H ∗ (BΣp ) �



F2[u] if p = 2,
Fp[u] ⊗ Λ[v] if p > 2.

Here u has degree 1 if p = 2, while u has degree 2p − 2 and v has degree 2p − 3 if p is
odd.

De�nition 4.2.1. If E is an H 2
∞-algebra, the homology power operation

Q : H∗ (E2n ) → H∗ (E2pn ) ⊗̂H
∗ (BΣp )

is adjoint to the map

H∗P : H∗ (E2n ) ⊗H∗ (BΣp ) → H∗ (E2pn )

induced by the map E2n ∧(BΣp )+ → E2pn of based spaces from Theorem 4.1.1.

The multiplicativity of the natural power operation P has the following conse-
quence.

Proposition 4.2.2. The operation Q satis�es Q (x ) ◦Q (y) = Q (x ◦y) and Q ([0]) = [0].

Proposition 4.2.3. Suppose E is an H 2
∞-algebra. Then for all n ∈ Z we have a commu-

tative diagram of sets

Ẽ2n (X )

Λ

��

P // Ẽ2pn (X ∧(BΣp )+)

Λ

��
H∗ (E2n ) ⊗̂H

∗ (X )
Q ⊗ 1

// H∗ (E2pn ) ⊗̂H ∗ (BΣp ) ⊗̂H ∗ (X )

that is natural in X . The horizontal maps preserve products and the bottom map is a map
of abelian groups.

Proof. The power operation P sends an element represented by a map α : X → E2n to
the composite

P (α ) : X ∧(BΣp )+
α ∧ 1
−−−−→ E2n ∧(BΣp )+

P
−→ E2pn .

The value of Λ(P (α )) is the e�ect on homology, which is the composite

H∗ (X ) ⊗H∗ (BΣp )
H∗α ⊗1
−−−−−→ H∗ (E2n ) ⊗H∗ (BΣp )

H∗P
−−−→ H∗ (E2pn ).

Taking adjoints recovers the statement about completed tensor products. �
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Remark 4.2.4. The map BCp → CP
∞ induces a map Ẽ2 (CP∞) → Ẽ2 (BCp ) that takes

the orientation class x to the generator α described in Theorem 4.1.3, and the map
H ∗ (CP∞) → H ∗ (BCp ) is the ring map that sends t to u2 if p is 2 or to a generator
w = u1/(p−1) in degree 2 if p is odd. By naturality of Λ, we �nd that Λ(α ) is equal to
b (u2) if p = 2 and is equal to b (w ) if p is odd.

For the remainder of this section we will focus on the prime 2. We �rst recall
the following calculation, which is dual to the identity used to de�ne the Steenrod
operations in [Ste62, VII.3.2, VII.6.1].

Lemma 4.2.5. For a space X with second extended power D2 (X ), the composite diagonal
map

H∗ (X ) ⊗ H∗ (BΣ2) → H∗ (X × BΣ2) → H∗ (D2 (X ))

on mod-2 homology is given by

v ⊗ βn 7→
∑
j≥0

Q j+n (Pjv ).

Here βn is dual to un and Pj is the homology operation dual to Sq j .

As a result, the Dyer–Lashof operations can be recovered from this diagonal map
into the extended power.

Theorem 4.2.6. Consider the homology operations

Q : H∗ (MU2n ) → H∗ (MU4n ) ⊗̂H
∗ (BΣ2)

from De�nition 4.2.1. Then there are multiplicative Dyer–Lashof operations

Q̂s : H∗ (MU2n ) → H∗ (MU4n ),

extending the Dyer–Lashof operations in degree zero of [CLM76, II.1] (coming from the
multiplicative E∞-space structure) to Dyer–Lashof operations in even degrees. These
satisfy the Cartan formula

Q̂s (x ◦ y) =
∑

p+q=s

Q̂p (x ) ◦ Q̂q (y)

and are related to Q by the identity

Q (x ) =
∑
n, j

Q̂ j+n (Pjx )u
n .

In particular, if all nontrivial Steenrod operations vanish onx thenQ (x ) = ∑
Q̂n (x )un .

This property is invariant under the product ◦.
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4.3 Power operations in the Hopf ring
We can now begin to use the results of the previous sections to calculate multiplicative
Dyer–Lashof operations in the Hopf ring for MU (the additive ones having been
determined by Turner [Tur93]). First we will �nd the e�ect on the class b1 ∈ H2 (MU2)
of De�nition 3.1.1, because ◦-multiplication by b1 represents suspension.

Proposition 4.3.1 (cf. [Pri75]). Let bk ∈ H2k (MU2) denote the fundamental classes of
De�nition 3.1.1. Then the 2-primary multiplicative Dyer–Lashof operations satisfy

Q̂2nb1 = b1 ◦ bn

for all n ≥ 1.

Proof. For a general prime p, we consider the commutative diagram

MU 0 (BU (1)) P //

t (γ1 )
��

MU 0 (BU (1) × BΣp )

e (γ1�ρ )t (γ1 )
��

M̃U
2
(MU (1)) P //

Λ

��

M̃U
2p
(MU (1) ∧(BΣp )+)

Λ

��
H∗ (MU2) ⊗H

∗ (MU (1))
Q ⊗ 1

// H∗ (MU2p ) ⊗H
∗ (BΣp ) ⊗H

∗ (MU (1)),

where the top square expressing compatibility of P with the Thom isomorphism is
from Proposition 4.1.2. Because x is the Thom class of the canonical bundle on BU (1),
Λ(t (γ1)) = b (s ). The image of the unit 1 ∈ MU 0 (BU (1)) along the left-to-bottom
composite is then

(Q ⊗ 1) (Λ(x )) = (Q ⊗ 1) (b (s )) =
∑
Q (bk )s

k .

On the other hand, the image along the top-right composite is

Λ *.
,
x

p−1∏
k=1

(x +F [k]Fα )+/
-
= b (s ) ◦ (b (s ) +[F ] b (u

2)) ◦ · · · ◦ (b (s ) +[F ] [p − 1][F ]b (u2)),

using the expression for the Euler class of the exterior tensor bundle γ1 � ρ on BU (1) ×
BΣp .

Taking the coe�cient of s , which involves only the linear term of b (s ) and the
constant coe�cients (in terms of s) of the factors b (s ) +[F ] [k][F ]b (u2), we �nd that

Q (b1) = b1 ◦ b (u
2) ◦ [2][F ]b (u2) ◦ · · · ◦ [p − 1][F ]b (u2).

When we specialize to p = 2 and apply Theorem 4.2.6, we �nd∑
j≥2

Q̂ j (b1)u
j = b1 ◦ b (u

2) =
∑
n≥1

(b1 ◦ bn )u
2n

as desired. �
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Proposition 4.3.2. Suppose that y ∈ π2nMU and that, in the coordinates of Theo-
rem 4.1.3, we have

P (y) =
∞∑
i=0

ciα
i

for some elements ci ∈ π4n+2iMU . Then

Q ([y]) =
∞

#
i=0

[ci ] ◦ b (u2)◦i

Proof. Taking X = ∗ in Proposition 4.2.3 identifying [y] with Λ(y), we �nd

Q ([y]) = Λ(P (y))

= Λ
(∑

ciα
i
)

=
∞

#
i=0

[ci ] ◦ b (u2)◦i

by Proposition 3.2.3 and Remark 4.2.4. �

Corollary 4.3.3. Mod #-decomposables and the ◦-ideal generated by b2,b3, . . . , the
Hurewicz image [x] ◦ b◦n1 ∈ H2n (MU0) of x ∈ π2n (MU0) satis�es

Q ([x] ◦ b◦n1 ) ≡
∞∑
i=0

[ci ] ◦ (b1)◦(i+2n)u2(i+n) .

In particular, Q̂2k ([x] ◦ b◦n1 ) ≡ [ck−n] ◦ b◦(k+n)1 in this quotient.

Proof. The �rst part follows from the multiplication formula Q ([x] ◦ b◦n1 ) = Q ([x]) ◦
Q (b1)

◦n . The second part follows from Theorem 4.2.6 and the fact that the operations
Pj vanish on [x] ◦ (b1)◦n for j > 0. �

4.4 Power operations in theMU -dual Steenrod algebra
We will now apply the previous technology to compute a multiplicative Dyer–Lashof
operation in H∗SL1 (MU ). In order to do so, we need some preliminary results about
how the additive product interacts with multiplicative Dyer–Lashof operations.

Proposition 4.4.1. At p = 2, the multiplicative and additive Dyer–Lashof operations in
the Hopf ring of an E∞-algebra satisfy the following identities.

1. When x and y are in the positive-degree homology of the path component of zero,
we have

Q̂s (x # y) ≡ Qs (x ◦ y)

mod #-decomposables.

2. When y is in the positive-degree homology of the path component of zero, we have

Q̂s ([1] # y) ≡ [1] #Qs (y) + [1] # Q̂s (y)

mod #-decomposables.
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3. For any positive-degree element x there exist elements zi for 0 < i < |x | such that

Qs (x ) = Qs [1] ◦ x +
∑

Qs+i [1] ◦ zi .

In particular, Qs (x ) is ◦-decomposable for any x and any s > 0.

Proof. The mixed Cartan formula [CLM76, II.2.5] takes the following form. If x and y
are elements with coproducts given by ∆x =

∑
x ′ ⊗ x ′′ and ∆y =

∑
y ′ ⊗ y ′′, then

Q̂s (x # y) =
∑

p+q+r=s

∑
Q̂p (x ′) #Qq (x ′′ ◦ y ′) # Q̂r (y ′′).

In the case of the �rst identity, the only time this is not decomposable under # is when
both Q̂p (x ′) and Q̂r (y ′′) are of degree zero; this occurs when p = r = 0 and we take
the terms [0] ⊗ x and y ⊗[0] of the coproduct.

In the case of the second identity, the only nonzero terms in the mixed Cartan
formula occur when p = 0 and either y ′ = [0] or y ′′ = [0].

The third identity is proven by induction on the degree of x , using the formula

Qs ([1]) ◦ x =
∑

Qs+i ([1] ◦ Pix )

from [CLM76, II.1.6]. �

Corollary 4.4.2. When x is in the positive-degree homology of the path component of
zero, we have

Q̂s ([1] # x ) ≡ Q̂s (x )

mod #-decomposables and ◦-decomposables, and hence

Q ([1] # x ) ≡ Q (x ).

Proof. We have

Q̂s ([1] # x ) − Q̂s (x ) ≡ [1] #Qs (x ) + [1] # Q̂s (x ) − [0] # Q̂s (x )

= ([1] − [0]) # (Qs (x ) + Q̂s (x )) +Qs (x )

≡ 0

because the �rst element is #-decomposable and the second is ◦-decomposable. �

Proposition 4.4.3. Suppose that x ∈ π2nMU and that, in the coordinates of Theo-
rem 4.1.3, we have

P (x ) =
∞∑
i=0

ciα
i

for some elements ci ∈ π4n+2iMU . Then mod #-decomposables, ◦-decomposables, and the
ideal generated by b2,b3, . . . , the Hurewicz image [1] # ([x] ◦ b◦n1 ) of x ∈ π2nSL1MU
satis�es

Q ([1] # ([x] ◦ b◦n1 )) ≡
∞∑
i=0

[ci ] ◦ (b1)◦(i+2n)u2(i+n) .

In particular, Q̂2k ([1] # ([x] ◦ b◦n1 )) ≡ [ck−n] ◦ b◦(k+n)1 in this quotient.
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Remark 4.4.4. We are working mod ◦-decomposables in H∗ (MU0), and not in the entire
Hopf ring, and so the right-hand side is not necessarily ◦-decomposable unless ck−n is.

Proof. By Corollary 4.4.2, we have

Q ([1] # ([x] ◦ b◦n1 )) ≡ Q ([x] ◦ b◦n1 ),

and by Corollary 4.3.3 this is congruent to

∞∑
i=0

[ci ] ◦ (b1)i+2nu2(i+n) .

In particular, taking coe�cients of both sides gives us that

Q̂2k ([1] # ([x] ◦ b◦n1 )) ≡ [ck−n] ◦ b◦(k+n)1

in this quotient. �

Remark 4.4.5. The expression for P (x ) as a series in α is not unique due to the fact that
it takes place in a quotient ring, and it is not immediately clear that the identity in this
proposition is independent of this choice. However, any indeterminacy is a multiple
of the identity [2]F (α ) = 0, whose image in the Hopf ring under the total unstable
invariant translates into an identity in terms of the Ravenel–Wilson relations.

We can now apply the results of Johnson–Noel from Theorem 4.1.4, as well as
Corollary 3.3.6 and Proposition 3.3.7.

Corollary 4.4.6. The Dyer–Lashof operations in H∗SL1 (MU ) satisfy

Q̂10 ([1] # ([x2] ◦ b◦21 )) ≡ [1] # ([x7] ◦ b◦71 )

mod #-decomposables, ◦-decomposables, and the ideal (b2,b3, . . . ).
The Dyer–Lashof operations in π∗ (H ∧MU H ) satisfy

Q10 (σx2) = σx7.

Remark 4.4.7. We can take a brief pause to sketch why no map MU → BP can be given
the structure of a map of E7-algebras at the prime 2, extending [JN10]. If it could, then
we can obtain a map of E6-algebras H ∧MU H → H ∧BP H , on homotopy given by a
map of exterior algebras Λ[σxi ] → Λ[σx2i−1]. However, this map would be zero on
the element σx2 and nonzero on the element σx7 = Q10 (σx2). (Here we use that Q10,
on a class in degree 5, is realized by an operation for E6-algebras—see Remark 2.6.14.)
This argument has been expanded in [Sen17].

5 Calculations withMU , HZ/2, and BP

In order to begin with more speci�c computations of secondary operations, we will
use the following convenient de�nitions.
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De�nition 5.0.1. For a symbol a and an integer k , we de�ne PEnH (ak ) to be the free
En H -algebra PEnH (Sk ), writing ak ∈ πkP

En
H (ak ) for the generator represented by the

unit map Sk → PEnH (Sk ).
Similarly, we use the coproduct in En H -algebras to de�ne

PEnH (ak1 ,bk2 , . . . ) = P
En
H (ak1 ) q . . . P

En
H (bk2 ) q · · · � P

En
H (∨Ski )

for a sequence (ak1 ,bk2 , . . . ). If a generator has a known, �xed, degree, we will leave
o� the subscript.

De�nition 5.0.2. Let D be the category of E∞ H -algebras under PH (x ), where x has
degree 2, and Dn the category of En H -algebras under PEnH (x ).

Let C = D± and Cn = (Dn )± as in De�nition 2.2.1.

There are forgetful functors between these categories, using the compatible maps
PEnH S2 → PEmH S2 that are adjoint to the units S2 → PEmH S2. The generator of H2MU �
Z/2 determines a map PH (x ) → H ∧MU up to equivalence, lifting it to an object of C.

5.1 Power operations forMU

The 2-primary power operations in H∗MU are known by work of Kochman [Koc73],
but the following closed-form formula is due to Priddy.

Theorem 5.1.1 ([Pri75]). The Dyer–Lashof operations in H∗MU � H∗BU are deter-
mined by the following identity:

∑
Q jbk = *

,

∞∑
n=k

k∑
u=0

(
n − k + u − 1

u

)
bn+ubk−u+

-
*
,

∞∑
n=0

bn+
-

−1

Here b0 = 1 by convention. In particular, we have

∑
Q jb1 = *

,

∞∑
n=1

(bnb1 + (n − 1)bn+1)+
-

*
,

∞∑
n=0

bn+
-

−1

.

This allows the following direct computation. (Compare [Pri75, 2.5], which carries
out this computation for MO).

Proposition 5.1.2. We have the following Dyer–Lashof operations in H∗MU :

Q2b1 = b
2
1

Q4b1 = b3 + b1b2 + b
3
1

Q6b1 = b
4
1

Q8b1 = b5 + b1b4 + b2b3 + b
2
1b3 + b1b

2
2 + b

3
1b2 + b

5
1

Q10b1 = b
2
3 + b

2
1b

2
2 + b

6
1

Q6b2 = b5 + b1b4 + b2b3 + b1b
2
2

Q10b2 = b
2
1b5 + b

3
1b4 + b

2
1b2b3 + b

3
1b

2
2
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In particular, the following identities hold:

0 = Q6b1 + b
4
1

0 = Q10b1 + (Q4b1)
2

Q6b2 = Q
8b1 + b

2
1Q

4b1

0 = Q10b2 + b
2
1Q

6b2

5.2 Power operations for H
The power operations in the dual Steenrod algebra are known by work of Steinberger.

Theorem 5.2.1 ([BMMS86, III.2.2, III.2.4]). The 2-primary Dyer–Lashof operations in
the dual Steenrod algebra satisfy the following identities:

1 + ξ1 +Q1ξ1 +Q
2ξ1 +Q

3ξ1 + · · · = (1 + ξ1 + ξ2 + . . . )−1

Qsξ i =



Qs+2i−2ξ1 if s ≡ 0,−1 mod 2i ,
0 otherwise.

Q2i ξ i = ξ i+1

This, again, allowed direct computation.

Proposition 5.2.2 ([BMMS86, III.5]). We have the following Dyer–Lashof operations
in the 2-primary dual Steenrod algebra:

Q2ξ 1 = ξ 2

Q3ξ 1 = ξ
4
1

Q4ξ 1 = ξ
2
1ξ 2

Q5ξ 1 = ξ
2
2

Q16ξ 4 = ξ 5

In particular, the Cartan formula implies that the following identities hold:

0 = Q6ξ
2
1 + ξ

8
1

0 = Q8ξ
2
1 + ξ

4
1Q

4ξ
2
1

0 = Q10ξ
2
1 + (Q4ξ

2
1)

2

Remark 5.2.3. While the identity Q16ξ 4 = ξ 5 is valid, the results of this paper only
require us to know the easier statement that Q16ξ4 ≡ ξ5 mod decomposable elements.
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5.3 Functional operations forMU → HZ/2
Recall that the category C is the category of E∞ H -algebras under PH (x ), where x has
degree 2.

Theorem 5.3.1. Consider the maps

PH (x , z14)
Q
−→ PH (x ,y4)

f
−→ H ∧MU

p
−→ H ∧H

in the category C, where Q sends z14 to Q10y4 + x
2Q6y4 and f sends (x ,y4) to (b1,b2).

Then a functional homotopy operation 〈p, f ,Q〉 is de�ned in PH (x )-algebras and satis�es

〈p, f ,Q〉 ≡ ξ4

mod decomposables.

Proof. The identitiesQ10b2+b
2
1Q

6b2 = 0 and p (b2) = 0 ensure that there is a homotopy
commutative diagram of E∞ PH (x )-algebras over H :

PH (x , z14)

Q
��

// PH (x )

�� &&
PH (x ,y4)

f //

��

H ∧MU //

p

��

H

��
PH (x ) // H ∧H

i // H ∧MU H

In particular, Q is a map of augmented objects and H ∧MU H is a pointed object,
ensuring that the secondary operation is de�ned. As a result, we can de�ne 〈p, f ,Q〉
and apply the Peterson–Stein formula of Proposition 2.3.5 to �nd that there is an
identity

〈i,p, f 〉Q = i〈p, f ,Q〉.

(Note that there is no inversion in this Peterson–Stein formula because the target
group is a vector space over F2.)

The bracket 〈i,p, f 〉 takes y4, which maps under f to the Hurewicz image b2 of
x2 ∈ π2MU , to the suspension class σb2 up to indeterminacy by Proposition 2.7.5. The
operation Q sends this to Q10 (σb2) + x

2Q6 (σb2) = Q10 (σb2) because x acts by 0 on
H ∧MU H . Then Corollary 4.4.6 implies that Q10 (σb2) ≡ σx7 mod decomposables, and
the proof of Proposition 2.7.6 shoes that σx7 ≡ i (ξ4) mod decomposables. Thus we
�nd that i〈p, f ,Q〉 = 〈i,p, f 〉Q ≡ i (ξ4) mod decomposables.

The indeterminacy in the functional homotopy operation 〈p, f ,Q〉 consists of el-
ements in the image of p and elements in the image of σQ , which are of the form
Q10 (y ′5) + ξ

2
1Q

6 (y ′5). However, there are no indecomposables in the image of p and
no indecomposables in the dual Steenrod algebra in degree 5, and so the indetermi-
nacy consists completely of decomposable elements. The map i is an isomorphism on
homotopy in degree 15 mod decomposables, and hence 〈p, f ,Q〉 ≡ ξ4 mod decompos-
ables. �
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5.4 A secondary operation in the dual Steenrod algebra
Proposition 5.4.1. Suppose that R is an E12 H -algebra and x ∈ π2 (R). De�ne the
following classes:

y5 = Q
3x

y7 = Q
5x

y9 = Q
7x

y13 = Q
11x

y8 = Q
6x + x4

y10 = Q
8x + x2Q4x

y12 = Q
10x + (Q4x )2

Then there is an identity

0 = Q20y10 +Q
18y12 +Q

17y13 + x
4 (Q12y10) + y

2
9 (Q

4x )2+

y27Q
9Q5x + y28Q

8Q4x + (Q9y9) (Q
4x )2 + (Q10y8) (Q

4x )2+

y25 (Q
11Q7x +Q10Q8x + x4Q6Q4x )

Proof. The following table breaks this down term-by-term, substituting in the values
of the yi .

Q20y10 = Q
20Q8x +Q20 (x2Q4x )

Q18y12 = Q
18Q10x +Q18 ((Q4x )2)

Q17y13 = Q
17Q11x

x4 (Q12y10) = x4 (Q12Q8x ) + x8Q8Q4x + x4 (Q3x )2Q6Q4x

y29 (Q
4x )2 = (Q7x )2 (Q4x )2

y27Q
9Q5x = (Q5x )2Q9Q5x

y28Q
8Q4x = (Q6x )2Q8Q4x + x8Q8Q4x

(Q9y9) (Q
4x )2 = (Q9Q7x ) (Q4x )2

(Q10y8) (Q
4x )2 = (Q10Q6x ) (Q4x )2

y25 (Q
11Q7x ) = (Q3x )2 (Q11Q7x )

y25 (Q
10Q8x ) = (Q3x )2Q10Q8x

y25 (x
4Q6Q4x ) = (Q3x )2 (x4Q6Q4x )

The reader who is interested in ensuring that these cancel is encouraged to do so with
the aid of a pen. To assist this, we list the following needed identities deduced from
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the Cartan formula, Adem relations, and instability relations where appropriate.

Q20Q8x = Q18Q10x +Q17Q11x

Q20 (x2Q4x ) = x4Q16Q4x + (Q3x )2Q14Q4x + (Q4x )2Q12Q4x+

(Q5x )2Q10Q4x + (Q6x )2Q8Q4x + (Q7x )2 (Q4x )2

Q18 ((Q4x )2) = 0
x4Q16Q4x = x4Q12Q8x

(Q3x )2Q14Q4x = (Q3x )2Q11Q7x + (Q3x )2Q10Q8x

(Q4x )2Q12Q4x = (Q4x )2Q10Q6x + (Q4x )2Q9Q7x

(Q5x )2Q10Q4x = (Q5x )2Q9Q5x

To apply Qr to an element in degree s , as well as make use of the Adem relations,
Cartan formula, and instability relations, we require the presence of an En-algebra for
n ≥ r − s + 2. The greatest value of n required from the equations above is when we
takeQ20y10, and in particular use additivity forQ20, which requires an E12-algebra. �

We can use this relation to build secondary operations.

Proposition 5.4.2. Suppose n ≥ 12 and let R be an object of Cn , corresponding to an
En H -algebra with an element x ∈ π2 (R), such that the classes yi of Proposition 5.4.1

vanish. Then there is a secondary operation on x given by 〈x ,Q
h
! R〉 ∈ π31R. The

indeterminacy in this secondary operation consists of elements of the form

Q20y ′11 +Q
18y ′13 +Q

17y ′14

and decomposables. This secondary operation is preserved by the forgetful functors
Cm → Cn form > n.

Proof. For any n ≥ 12, Proposition 5.4.1 describes a relation between homotopy
operations, in the form of a homotopy commutative diagram of En H -algebras

PEnH (z30)

ϵ

��

R // PEnH (x ,y5,y7,y9,y13,y8,y10,y12)

Q
��

H // PEnH (x ),

adjoint to a commutative diagram of En-algebras under PEnH (x ) of the form

PEnH (x , z30)

ϵ
))

R // PEnH (x ,y5,y7,y9,y13,y8,y10,y12)

Q
��

PEnH (x ).
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Here the maps Q and R are de�ned by the equations of Proposition 5.4.1. The map R is
a map of augmented objects, the domain by the map ϵ sending z30 to 0 and the range
by the map sending all yi to zero. In particular, the homotopy commutativity of the
above diagrams shows that there exists a tethering Q

h
! R in the category Cn .

The indeterminacy in this secondary operation consists of elements in the image
of the suspended operation

σR : PEnH (x , z ′31) → P
En
H (x ,y ′6,y

′
8,y
′
10,y

′
14,y

′
9,y
′
11,y

′
12).

Proposition 2.6.13 implies that σR is given by

z ′31 7→ Q20y ′11 +Q
18y ′13 +Q

17y ′14 + x
4 (Q12y ′11) + (Q9y ′10) (Q

4x )2 + (Q10y ′9) (Q
4x )2,

since the other terms involve binary products that map to zero. However, the terms
other than Q20y ′11 +Q

18y ′13 +Q
17y ′14 always take decomposable values. �

Proposition 5.4.3. In the 2-primary dual Steenrod algebra

H∗H � F2[ξ1, ξ2, . . . ],

viewed as the homotopy of the H -algebra H ∧H , the bracket 〈ξ 21 ,Q,R〉 is de�ned, and
the indeterminacy is zero mod decomposables.

Proof. The Cartan formula for Dyer–Lashof operations immediately implies that
Q2k+1 (ξ 21 ) = 0 for all k . The remaining identities

0 = Q6ξ 21 + ξ
8
1

0 = Q8ξ 21 + ξ
4
1Q

4ξ 21

0 = Q10ξ 21 + (Q4ξ 21 )
2

were determined in Proposition 5.2.2. Therefore, ξ 21Q = 0 and the bracket 〈ξ 21 ,Q,R〉 is
de�ned.

We now consider the indeterminacy. The indeterminacy is generated by adding
the results of degree-29 homotopy operations applied to ξ 21 , Dyer–Lashof operations
applied to elements in degrees 11, 13, and 14, and decomposables. Proposition 2.6.12
showed that all nonconstant homotopy operations are generated by multiplication,
addition, and the operations Qn , all of which preserve decomposables. The dual
Steenrod algebra contains no indecomposables in degrees 11, 13, and 14, and so any
operation applied to such an element is decomposable. �

The operations Q and R, while complex, can be related to simpler operations using
the following diagram.

Proposition 5.4.4. Consider the maps

µ : PH (x ,y5,y7,y9,y13,y8,y10,y12) → PH (x ,y4)
ν : PH (x , z30) → PH (x , z14)
α : PH (x , z30) → PH (x , z15)
β : PH (x , z15) → PH (x ,y4)
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of augmented objects, de�ned by the identities

µ (yi ) = 0 for i , 10
µ (y10) = Q

6y4

ν (z30) = Q
16z14

α (z30) = (z15)
2

β (z15) = Q
3xQ6y4

Then there is an identity µR = Qν + βα and a homotopy commutative diagram in C of
the form

PH (x ,yi )

µ

��

Q // PH (x )

b1
��

ξ 21

%%
PH (x ,y4) f

// H ∧MU
p // H ∧H ,

where f and Q are from Theorem 5.3.1.

Proof. It is classical that the map p : H2MU → H2H takes b1 to ξ 21 , making the right-
hand triangle commute.

To verify that the map µ makes the square diagram commute in the homotopy
category, we need to know that the Dyer–Lashof operations on b1 satisfy

0 = Q3b1

0 = Q5b1

0 = Q7b1

0 = Q11b1

0 = Q6b1 + b
4
1

0 = Q10b1 + (Q4b1)
2

Q6b2 = Q
8b1 + b

2
1Q

4b1

The odd operations vanish automatically because H∗MU is concentrated in even
degrees, and the remaining three identities were proven in Proposition 5.1.2.

Finally we need to verify the identity Qν = βα + µR. Using the de�nition of µ and
the formula from Proposition 5.4.1 for R, we �nd that

µ (R (z30)) = Q
20Q6y4 + x

4Q12Q6y4

In the Adem relation Q20Q6 = Q16Q10 + Q14Q12 + Q13Q13, the last two terms auto-
matically vanish on classes in degree four. Therefore, we can continue to simplify,
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�nding

µ (R (z30)) = Q
16Q10y4 + x

4Q12Q6y4

= Q16Q10y4 +Q
16 (x2Q6y4) + (Q3x )2 (Q6y4)

2

= Q16 (Q10y4 + x
2Q6y4) + (Q3xQ6y4)

2

= Q16 (Q (z14)) + β (z15)
2

= Qν (z30) + βα (z30),

as desired. �

Corollary 5.4.5. In the dual Steenrod algebra, any element in the bracket 〈ξ 21 ,Q,R〉 is
congruent to ξ5 mod decomposables.

Proof. We �rst observe that three types of elements in degree 31 are decomposable in
the dual Steenrod algebra.

• The �rst are elements in the image of p : H∗MU → H∗H : the only indecompos-
able element in the image of p is 1 ∈ H0H .

• The second are elements in the image of σR, which (as in Proposition 5.4.2)
consists of multiples of Dyer–Lashof operations applied to elements in degrees
11, 13, and 14. Degrees 11, 13 and 14 contain no indecomposables, and so the
Cartan formula for Dyer–Lashof operations implies that any elements in the
image of σR are decomposable.

• The third are elements in the image of σ (Qν ) or σ (βα ), both of which are
multiples of Dyer–Lashof operations applied to classes in degree 5. Degree 5
contains no indecomposables, and thus similarly the images of these elements
are indecomposable.

Multiple applications of Proposition 2.3.5 and Proposition 2.4.3 give us the following
string of identities.

〈ξ 21 ,Q,R〉 = 〈pb1,Q,R〉

⊂ 〈p,b1Q,R〉

= 〈p, f µ,R〉

⊃ 〈p, f , µR〉

= 〈p, f ,Qν + βα〉

⊂ 〈p, f ,Qν〉 + 〈p, f , βα〉

⊃ 〈p, f ,Q〉ν + 〈p, f , β〉α .

We note that in all of these brackets, the indeterminacy is contained in the three
types mentioned above: the image of p, the image of σR, and the images of σ (Qν )
or σ (βα ). It su�ces to check at the local maxima for indeterminacy in this chain
of containments: the brackets 〈p,b1Q,R〉 and 〈p, f ,Qν〉 + 〈p, f , βα〉. Therefore, if we
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work mod decomposables we get unambiguous values and these containments become
equalities. We �nd

〈ξ 21 ,Q,R〉 ≡ 〈p, f ,Q〉ν + 〈p, f , β〉α .

By Theorem 5.3.1, we have

〈p, f ,Q〉(νz30) = Q
16 (〈p, f ,Q〉(z14)) ≡ Q16ξ4 ≡ ξ5

mod decomposables. On the other hand,

〈p, f , β〉α (z30) = (〈p, f , β〉(z15))
2

which is automatically decomposable. Therefore, every element in 〈ξ 21 ,Q,R〉 is con-
gruent to ξ5 mod decomposables. �

Theorem5.4.6. Suppose thatn ≥ 12 andR is an En ring spectrumwith amapд : R → H
and an element x ∈ H2 (R) such that д(x ) = ξ 21 in H2H . If the element x makes the
classes yi of Proposition 5.4.1 zero, then the map H31R → H31H has ξ5 in its image mod
decomposables.

In particular, if H∗R → H∗H is injective through degree 13, this result holds.

Proof. Under these conditions, H ∧R → H ∧H is a map of En H -algebras, and (up
to equivalence) the map PEnH (x ) → H ∧H lifts to a map PEnH (x ) → H ∧R. Thus,
H ∧R → H ∧H can be lifted to a map in Cn which, on homotopy groups, gives the
map д : H∗R → H∗H .

Then the secondary operation 〈x ,Q,R〉 is de�ned and the map д carries 〈x ,Q,R〉
into a subset of 〈ξ 21 ,Q,R〉, all of whose elements are congruent to ξ5 mod decomposables.

�

5.5 Application to the Brown–Peterson spectrum
Using Theorem 5.4.6, we can now exclude the existence of En-algebra structures on
spectra related to the Brown–Peterson spectrum. We �rst recall the homology of the
Brown–Peterson spectrum, dual to the cohomology described in [BP66].

Proposition 5.5.1. The Brown–Peterson spectrum BP is connective, with π0BP � Z(2) .
The map BP → HF2 induces an inclusionH∗BP ↪→H∗HF2 whose image is the subalgebra

F2[ξ 21 , ξ 22 , . . . ] ⊂ F2[ξ1, ξ2, . . . ]

of the dual Steenrod algebra. The image in positive degrees consists entirely of decompos-
ables.

Similarly, we have truncated Brown–Peterson spectra BP〈k〉 and their generalized
versions.

Proposition 5.5.2 ([LN14, 4.3]). Any generalized truncated Brown–Peterson spectrum
BP〈k〉 is connective, with π0BP〈k〉 = Z(2) . The map BP〈k〉 → HF2 induces an inclusion
H∗BP ↪→H∗HF2 whose image is the subalgebra

F2[ξ 21 , ξ 22 , . . . ξ 2k+1, ξk+2, ξk+3, . . . ] ⊂ F2[ξ1, ξ2, . . . ]
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of the dual Steenrod algebra. The image in positive degrees consists entirely of decompos-
ables until dimension 2k+2 − 2.

In particular, the element ξ5 is not in the image mod decomposables for k ≥ 4.
These spectra are also of �nite type, and their 2-adic completions have the same
homology groups.

By considering the cohomology in degree zero, we �nd that there is a unique
nontrivial map of spectra BP → HF2, and similarly for BP〈k〉. (At odd primes, this map
is unique up to scalar.) As En-algebras have Postnikov towers, there is the following
consequence.

Corollary 5.5.3. If BP or BP〈k〉 admits the structure of an En-algebra, then the unique
nontrivial map to HF2 lifts to a map of En-algebras.

We can now apply Theorem 5.4.6.

Theorem 5.5.4. The 2-local Brown–Peterson spectrum BP , the (generalized) truncated
Brown–Peterson spectra BP〈k〉 for k ≥ 4, and their 2-adic completions do not admit the
structure of En-algebras for any 12 ≤ n ≤ ∞.

Remark 5.5.5. The above results can also be applied to appropriate truncations in the
Postnikov tower for BP .

A Power operations in the Lazard ring
In this section we will extend Johnson–Noel’s proof of Theorem 4.1.4 to a proof that
works in torsion-free quotients of the Lazard ring. The following calculations are
specialized to the prime 2.

The power operation P of Section 4.1 takes the form of a natural transformation

P : MU 2n (X ) → MU 4n (X × BΣ2) ↪→MU 4n (X )[[α]]/[2]F (α ).

Writing the 2-series as
[2]F (α ) = α · 〈2〉F (α ),

we have the following properties.

• The identity P (uv ) = P (u)P (v ) holds.

• The identity P (u) ≡ u2 holds mod α .

• The identity P (u +v ) ≡ P (u) +P (v ) holds mod 〈2〉F (α ). In particular, P becomes
a ring homomorphism in this quotient.

• On the canonical orientation x ∈ M̃U
2
(CP∞), we have P (x ) = x (x +F α ).

Let L = MU ∗ be the Lazard ring, and de�ne д(x ,α ) = x (x +F α ) in the power series
ring L[[x ,α]]. Applying the identities for P to the spaces (CP∞)n and the natural maps
between them, we deduce the following.
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Proposition A.0.1. The map P induces a ring homomorphism

Ψ : L → L[[α]]/〈2〉F (α )

and the power series д(x ,α ) de�nes an isogeny F → Ψ∗F :

д(x ,α ) +
Ψ∗F

д(y,α ) ≡ д(x +F y,α ). (A.1)

The rings L and L[[α]]/〈2〉F (α ) are torsion-free, and so the formal group laws F
and Ψ∗F have logarithms:

`F (x ) =
∑ CPn−1xn

n
`Ψ∗F (x ,α ) =

∑ Ψ(CPn−1)xn

n

By choosing any lifts of Ψ(CPn ) to L[[α]], we can view these formulas as de�ning
power series (`F )′(x ) ∈ L[[x]] and (`Ψ∗F )

′(x ,α ) ∈ L[[x ,α]].
Taking derivatives of (A.1) with respect to y and evaluating at y = 0, we �nd

д′(0,α )
(`Ψ∗F )′(д(x ,α ),α )

≡
д′(x ,α )

(`F )′(x )

in L[[x ,α]]/〈2〉F (α ), and thus

д′(x ,α ) (`Ψ∗F )
′(д(x ,α ),α ) = α · (`F )

′(x ,α ) + h(x ,α ) · 〈2〉F (α ) (A.2)

for some power series h(x ,α ) ∈ L[[x ,α]].
We now substitute x = αy and observe that

д(αy,α ) = α2k (y,α ),

where the power series k (y,α ) has the form y +O (y2). Hence, there a composition
inverse: a series k−1 (y,α ) of the same form such that k (k−1 (y,α ),α ) = y.

Substituting x = αy in to (A.2), we obtain an identity

αk ′(y,α ) (`Ψ∗F )
′(α2k (y,α ),α ) = α · (`F )

′(αy) + h(αy,α ) · 〈2〉F (α )

which can be simpli�ed to the statement

(`Ψ∗F )
′(α2y,α ) = (`F )

′(αk−1 (y,α )) (k−1)′(y,α ) + h̃(y,α ) · 〈2〉F (α )

for some series h̃(y,α ) ∈ L[[y,α]]. If we write fn (α ) for the coe�cient of yn in
(`F )

′(αk−1 (y,α )) (k−1)′(y,α ), we then �nd that

Ψ(CPn )α2n = fn (α ) + h̃n (α ) · 〈2〉F (α )

for some series h̃n (α ). If f : L → S is any ring homomorphism, there is a degree-2n
polynomial hn (α ) ∈ S[α] such that

fn (α ) − hn (α ) · 〈2〉F (α ) ≡ f (CPn )2
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in S[[α]]/(α2n+1). If 2 is not a zero divisor in the ring S , this determines hn (α ) uniquely
and so it can be calculated in S . We deduce that

f (P (CPn )) ≡ α−2n ( fn (α ) − hn (α ) · 〈2〉F (α ))

in S[[α]]/[2]F (α ).
In particular, we may take S = Z[v3]/(v2

3 ), which has logarithm x + v3
2 x

8. We can
then expand out the de�nitions in this ring.

x +F y = x + y + v3
2 (x

8 + y8 − (x + y)8)

〈2〉F (α ) = 2 − 127v3α7

(`F )
′(x ) = 1 + 4v3x7

д(x ,α ) = αx + x2 + v3
2 (α

8 + x8 − (α + x )8)

= αx + (1 − 4v3α7)x2 − 14v3α6x3 +O (x4)

k (y,α ) = y + (1 − 4v3α7)y2 − 14v3α7y3 +O (y4)

k−1 (y,α ) = y + (4v3α7 − 1)y2 + (2 − 2v3α7)y3 +O (y4)

(`F )
′(αk−1 (y,α )) = 1 +O (y7)

(k−1)′(y,α ) = 1 + (8v3α7 − 2)y + (6 − 6v3α7)y2 +O (y3)

f2 (α ) = 6 − 6v3α7

h2 (α ) = 3
f (P (CP2)) = 375v3α3

≡ v3α
3.

Here the last congruence follows because, in the ring S[α]/[2]F (α ),

2αv3 ≡ 127v2
3α

8 ≡ 0

because v2
3 = 0. Finally, P (CP2), in BP∗[[α]]/[2]F (α ) mod decomposables, can only

involve v3, v4, and higher, so we �nd P (CP2) ≡ v3α
7 mod decomposables and higher-

order terms in α as desired.
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