
In which I try to get the signs right for once
or: a public exercise in futility

Tyler Lawson

September 24, 2013

Not so long ago, a colleague of mine asked me the following question: What’s
the sign convention for commutativity of elements in the Adams spectral
sequence?

Let’s write s for the Ext-degree and t for the grading degree. I found in more
than one source that for an element x in bidegree (s, t) and y in bidegree
(s′, t′), the rule is:

xy = (−1)ss
′+tt′yx.

This is a reasonable-sounding convention that happens to be utterly false.

For example, there is a unique element in filtration 1, grading degree 1 in the
Adams spectral sequence. No matter what your name for it is, it represents
multiplication by p and it quite simply does not anticommute with elements
in odd total degree. When I tried to check what was going wrong, it quickly
became apparent that my conventions for multiplication and the boundary
operator were simply incompatible.

Unfortunately, my understanding of why certain things have the sign con-
ventions they do was a house of cards, especially with respect to the cobar
complex. So I tried to work things out by making as few arbitrary choices as
possible, and working from reasoning that made more sense to me than try-
ing to figure out exactly which symbols have which degrees and what counts
as moving something across something else. I wrote it down here so that I
hopefully never have to do it again.

This is not a particularly formal document but I’m posting it in case it helps
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someone else.

(In Sept. 2013 I added some material about the connecting homomorphism
for exact triangles.)

1 Convention 0: Stars.

I’m not going to decorate chain complexes with stars. The chain complex is
the object I’m interested in, not the modules that build it up, and so I’m
just not going to do it.

2 Convention I: Homological algebra.

I’m going to try to hold the basic convention of homological algebra: if
something of degree p moves across something of degree q, it introduces the
sign (−1)pq. However, I’m going to decree it in as few places as possible.

As a result, graded abelian groups get a tensor product

(A⊗B)n = ⊕p+q=nAp ⊗Bq

where the symmetry isomorphism τ sends a⊗ b to (−1)|a||b|b⊗ a.

A ground ring is implicit. (If it becomes an issue I will come back and make
conventions.)

3 Convention II: Homological indexing.

Cochain complexes will be chain complexes in negative degrees.
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4 Convention III: Things operate on the left.

In general, unless specifically requested otherwise, functions and operators
act on the left.

In particular, the boundary map ∂ of a chain complex then acts on the left.

5 Tensor products

Our demands for tensor products and boundary maps leads to the sign con-
vention for the tensor product of two chain complexes:

∂(a⊗ b) = (∂a)⊗ b+ (−1)|a|a⊗ (∂b)

This makes chain complexes into a symmetric monoidal category.

6 Shift operators

Here we start to get annoying. There are two standard conventions for the
same shift operator on chain complexes. One is ΣC, and one is C[1]. These
suggest different conventions for their boundary map.

The first notation suggests that the elements of ΣC are of the form Σa, and
∂(Σa) = −Σ(∂a) by our sign conventions. The second convention suggests
that the elements of C[1] are of the form a[1], and ∂(a[1]) = (∂a)[1]. Note
that this is NOT the convention that is often used in homological algebra for
C[1] - a sign is often introduced.

More bluntly, let S be the chain complex which is Z in degree 1 and zero
elsewhere. Then ΣC under the above conventions is another name for S⊗C,
and C[1] is another name for C⊗S. They’re isomorphic, but they’re not the
same. I’m going to try and keep things described in a way where I remember
what convention I’m using.
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7 Convention IV: Tensor up on the left.

In view of the previous section, I’m going to say that we’re usually going
to stick with the ΣC-type notation, where we tensor up with standardized
objects on the left. This at least is consistent with the sign conventions in
homological algebra, if not the right-side shift notation.

This will probably come back to bite me.

8 Simplices

I’m going to use another complex; the normalized chain complex Z(∆[n]) of
the standard n-simplex. More specifically, Z(∆[n])0 = Zn+1, with generators
[0] through [1], etc, with Z(∆[n])n = Z with a single generator [0, 1, . . . , n].
Under our sign convention (and I use this in the loosest possible sense!), I’m
going to define the boundary by

∂[a0, · · · , ap] =
∑

(−1)i[a0, . . . âi . . . , ap]

where the sign comes in because the edges are 1-dimensional.

Using 0 through n isn’t special, so I have a normalized chain complex associ-
ated to any sequence of symbols, and natural maps between them: e.g. from
[1, 2] to [0, 1, 2].

Similarly, we’ll have normalized chain complexes of arbitrary simplicial sets.

9 Mapping cylinders

If we can’t even get the shift operator right without making choices, we’re
probably in trouble for most other definitions as well. Let’s discuss mapping
cylinders. There is more than one way to make a mapping cylinder. I’m
going to think of the interval [0, 1] as “directed” towards 1, so that 1 should
be the range of a function.

If f : A → B is an arbitrary map, then I get a pushout defining a mapping
cylinder:
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[1]⊗ A

��

// Z(∆[1])⊗ A

��
[1]⊗B //Mf

There’s a composite inclusion map [0]⊗A→ Z(∆[1])⊗A→Mf . The map
[1]⊗B →Mf is a chain homotopy equivalence.

In degree n, this complex is

[0]⊗ An ⊕ [1]⊗Bn ⊕ [0, 1]⊗ An−1,

which we can view as identified withAn⊕Bn⊕An−1. Under this identification,
the boundary map is

∂(a, b, a′) = (∂a− a′, ∂b+ f(a′),−∂a′).

10 Mapping cones

The mapping cone Cf of f : A→ B is the quotient of the mapping cylinder
Mf by the inclusion of [0]⊗ A. In particular, in degree n we can identify it
as

[1]⊗Bn ⊕ [0, 1]⊗ An−1

with
∂(b, a′) = (∂b+ f(a′),−∂a′).

This gives me at least one good reason to go with the tensoring on the left
convention; this agrees with the definition of the mapping cone that I’m used
to. If I’d tensored on the right, there would be some (−1)n-terms, and if I’d
done the pushout with [0] ⊗ B, I’d have ended up with a different sign on
f(a′).

11 Exact triangles

In the homotopy category of chain complexes, we’re going to want exact
triangles. We want these to be sequences A → B → C → ΣA which help
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us satisfy the axioms for a triangulated category, and C is (nonuniquely)
determined by the maps A and B. Moreover, we want exact sequences 0→
A→ B → C → 0 to determine an exact triangle, via some map C → ΣA in
the homotopy category.

This forces some things upon us. Let’s write the following diagram, natural
for injections A→ B:

0 // A // B // C // 0

0 // A //Mf
//

∼

OO

∼
��

Cf //

∼

OO

0

0 // B // Cf // ΣA // 0

If we’re going to expect the axioms for exact triangles to hold and to be
compatible with equivalences, then the map C → ΣA which finishes our
exact triangle is going to need to be represented in the homotopy category
by the composite C

∼← Mf → ΣA. The whole exact triangle is represented
by A → Mf → Cf → ΣA (which is valid even if we do not require f to be
an injection).

Let’s examine the connecting map in homology. We start with a homology
element represented by a cycle α in HnC, and lift it to a homology element
in Hn(Cf ). Lifting α to α̃ in Hn(B) whose boundary is in A, we find that
α lifts to the cycle [0] ⊗ α̃ − [0, 1] ⊗ ∂α̃ in Cf . The image of this under the
morphism Cf → ΣA sends this cycle to −[0, 1]⊗ ∂α̃.

Note that under the standard conventions for identifying the underlying
abelian groups, this is opposite to the convention you would get by chas-
ing the long exact sequence in homology. However, it appears to be forced
by naturality and the particular identifications we are using.

12 Function complexes

Functions act on the left under our convention. This suggests that once we
define a complex F (C,D) = Hom(C,D) of functions from one chain complex
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to another, there should be an “evaluation” pairing

F (C,D)⊗ C → D.

The only sign convention that makes this into a chain map is

(∂f) = ∂ ◦ f − (−1)|f |f ◦ ∂

for an element f = (fk : Ck → Dk+|f |)k∈Z.

I’m using F instead of Hom most of the time because it’s shorter to write,
and because it’s already standard notation, and because I’m going to reserve
Hom to denote the actual set of maps of chain complexes. In particular, I’m
not going to underline it.

13 Dualizing

As a result of the previous section, if we have an abelian group M we can
convert a chain complex C to a cochain complex F (C,M) where we view M
as a complex concentrated in degree 0, and the boundary convention should
be

∂f = (−1)|f |+1(f ◦ ∂).

If you don’t have this convention, and you are trying to do something like -
for example - evaluate cap products, you end up with a bunch of diagrams
that only commute up to sign. I have complained about this to more people
than I should have.

14 Convention V: Adjunctions.

Ideally we would like for the tensor product and function complex to be
adjoint. Even better, under our “functions act on the left” convention we’d
like the evaluation pairing

ev : F (C,D)⊗ C → D
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to be the canonical instance of this adjunction, and more generally for our
composition pairing to be written in the annoying but familiar order

F (D,E)⊗ F (C,D)→ F (C,E)

as another instance of said adjunction. In order for this to be true, I’m going
to write the “standard” adjunction as

Hom(A⊗B,C) ∼= Hom(A,F (B,C)),

and its function-complex lift as

F (A⊗B,C) ∼= F (A,F (B,C)).

I could write it in the opposite order (which is often standard) and it’s
equivalent using the symmetry part of our symmetric monoidal structure,
but I want to keep things simple.

Under this convention, A — and more generally, A ⊗ X — is always a left
F (A,A)-module.

15 Tensoring functions

We have a “tensor product” map

⊗ : F (A,B)⊗ F (C,D)→ F (A⊗ C,B ⊗D)

that has the meaning we hope it does when we’re actually evaluating func-
tions. Of course, this involves an interchange of parameters; it is adjoint to
the map

F (A,B)⊗ F (C,D)⊗ (A⊗ C)→ B ⊗D

given by (ev ⊗ ev) ◦ (1⊗ τ ⊗ 1).

In particular, suppose f ∈ F (A,B) and g ∈ F (C,D). Then (f⊗g) is defined
by

(f ⊗ g)(a⊗ b) = (−1)|g||a|f(a)⊗ g(b)

as it should be.
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16 Duality

If R is the ground ring, we have a dualization functor DX = F (X,R). This
has a natural pairing DX⊗X → R and hence the pairing Y ⊗DX⊗X → Y
is adjoint to a map Y ⊗DX → F (X, Y ). If X is a perfect complex, this is
an isomorphism.

17 Dualization of coalgebras

Given a coassociative and possibly cocommutative coalgebra C, with comul-
tiplication C → C⊗C, we can dualize it and get a differential graded algebra.
By this, I will mean taking the Hom-complex F (C,R) for a ring R concen-
trated in degree zero. (A more complete discussion should include statements
that hold when R is a differential graded algebra itself.) Specifically, we have
a composite map

^ : F (C,R)⊗ F (C,R)→ F (C ⊗ C,R⊗R)→ F (C,R)

given by tensoring functions, then precomposing with the comultiplication
and postcomposing with the multiplication. Specifically, suppose we have
f, g ∈ F (C,R) and c ∈ C whose image under the comultiplication is

∑
c′⊗c′′.

Then
(f ^ g)(c) =

∑
(−1)|g||c

′|f(c′)g(c′′).

If R is the unit for the tensor product, then C becomes a module over
F (C,R). If you’ve taught an algebraic topology course, you may have
screwed this point up.

I have to make a choice about conventions at this point. Because F (C,R) is
a ring, I might want it to act on the left on C. However, in Poincaré duality
(the standard application) we typically pick a single fundamental class, and
use it to define an operator taking cochains and producing chains. I am going
to have the functions act on the left, especially in light of my convention for
adjunctions later.

So convention that we want this to be a left module, the map you need to
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use is the following composite.

_ : F (C,R)⊗ C → F (C,R)⊗ C ⊗ C → C ⊗ F (C,R)⊗ C → C ⊗R ∼= C

The point being that the dualization procedure essentially reverses the co-
multiplication order of C. In formulas, if f ∈ F (C,R) and c ∈ C has
comultiplication

∑
c′ ⊗ c′′, then we have

f _ c =
∑

(−1)|f ||c
′|c′f(c′′).

If you try to evaluate on the left-hand factor of C instead, it will quite simply
not be a module - the multiplication order gets reversed. I’m also a little
leery of trying to define

c _ f = f(c′)c′′ (NOT A VALID FORMULA)

because, even though it looks like it makes things into a right module, the sign
convention makes me worry about trying to do any chain-level manipulations.

18 Poincaré duality

Let’s say a complex C with a comultiplication is a duality complex of dimen-
sion r if there is a “dualizing cycle” D ∈ Cr such that the cap product

f 7→ f _ D

induces a weak equivalence between C and its dual. Namely, the element D
can be represented by a chain map ΣrR→ C, and we get a composite chain
map

F (C,R)⊗ ΣrR→ F (C,R)⊗ C _→C.

and the statement that we have a duality complex is that this is a chain
equivalence. Notice that the the ΣrR occurs on the right, whereas ΣrF (C,R)
is defined as ΣrR⊗ F (C,R).

Using this, we can transport the multiplication on cochains to an “intersec-
tion pairing” on homology. Namely, we take the adjoint to the above duality
map:

F (C,R)→ F (ΣrR,C).
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This is a natural equivalence of chain complexes. Duality takes the form of
an isomorphism

F (ΣrR,C) ∼= C ⊗ Σ−rR.

It is very tempting to go back at this point and, instead of asking that F (C,R)
act on the left on C, ask that it act on the right. However, we should note
that if we do this, we will instead be trying to construct the adjoint to a map

ΣrR⊗ F (C,R)→ C,

and to apply our adjunction conventions we would then first need to apply
the twist isomorphism and get a sign out of it.

19 Realizing simplicial objects

Suppose we have a simplicial chain complex C•. We’d like to get an internal
realization of it as a chain complex, and we’d like to understand why we use
the sign conventions that we do and not just make stuff up as we go along.

Here is the convention: We’re going to go back to topology and build it the
same way as we realize a simplicial complex. We’ll built by skeleta, attaching
along the boundary of a standard simplex.

The 0-skeleton is sk0(C•) = Z(∆[0]) ⊗ C0, the normalized chain complex of
the standard 0-simplex tensored with the 0’th chain complex C0. This is
naturally isomorphic to C0, because nothing interesting has happened yes.

The 1-skeleton is formed as a pushout:

Z(∂∆[1])⊗ C1

d0,d1
��

// Z(∆[1])⊗ C1

��
sk0(C•) // sk1(C•)

Since the map Z(∂∆[1]) → Z(∆[1]) is an inclusion with cokernel ΣZ, the
above pushout tells us there is a natural distinguished triangle

sk0(C•)→ sk1(C•)→ ΣC1.
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If we actually want to get dirty with chain-level computations, we can do that.
The degree n elements in the 1-skeleton are of the form [0]⊗ a⊕ [0, 1]⊗ b for
a ∈ C0 of degree n and b ∈ C1 of degree n− 1. If we simply write this as an
ordered pair (a, b), then the boundary formula is:

∂(a, b) = (∂a+ d0(b)− d1(b),−∂b)

And we keep going. For each n, we have a pushout:

Z(∂∆[n− 1])⊗ Cn

��

// Z(∆[n])⊗ Cn

��
skn−1(C•) // skn(C•)

(The left-hand vertical map is the annoying one to define; one uses that
Z(∂∆[n]) is a union of subcomplexes given by faces, and on each face you
have a map given by the face maps in the simplicial object.) Taking the limit
(which is equivalent to a union) gives us a chain complex Tot(C•). We can
identify the degree n part with the direct sum over k of the degree (n−k)-part
of Ck, and under this convention the boundary of

(a0, a1, a2, . . .)

is

(∂a0 + d0a1 − d1a1,−∂a1 + d0a2 − d1a2 + d2a2, ∂a2 + d0a3 − d1a3 + d2a3, . . .)

In particular, the boundary map is the sum of the “vertical” boundary map
∂ applied levelwise — with signs! — and the “horizontal” boundary map∑

(−1)idi.

20 Intermission on geometric realization

One way to describe the geometric realization from the previous section is in
the same way as the realization of a semisimplicial object, namely as∐

n

Z(∆[n])⊗ Cn/ ∼
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or more concisely as the coend∫ ∆inj

Z(∆[n])⊗ Cn.

Here ∆inj is the subcategory of the standard category of finite ordered sets,
consisting of just the injections. This corresponds to the “thick” geometric
realization of simplicial sets or simplicial spaces.

The construction outlined in the previous section isn’t a “normalized” chain
complex construction, meaning that it doesn’t mod out by degeneracies.
That would be described instead as the coend over the whole category of
finite ordered sets: ∫ ∆

Z(∆[n])⊗ Cn

This is the quotient of the previous notion by the subcomplex generated by
the images of the degeneracy maps. It has the same homology.

In topology or stable homotopy theory, we have no choice but to use a defini-
tion of geometric realization like this because the ability to realize a simplicial
object is dependent on having the entire simplicial structure. We don’t have
the ability to form alternating sums of maps in a coherent way that allows a
“simpler” description of the total complex like the ones occurring in homo-
logical algebra. If we remember this extra bit to the geometric realization,
the associated combinatorial structure gives us the signs we need.

21 The bar construction, take I

This brings us to a dear friend whose sign conventions have personally given
me nightmares on more than one occasion. Namely, the bar construction
— or specifically, in this case, the bar construction of a differential graded
algebra with coefficients in a pair of differential graded modules. Suppose
A is a differential graded algebra with left module N and right module M .
Then the bar construction is the simplicial chain complex

B(M,A,N) = M ⊗N ⇔M ⊗ A⊗N · · ·

We will write the elementary tensors in the bar construction in simplicial
degree p as m⊗ a1 ⊗ · · · ⊗ ap ⊗ n for now.
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Using the convention of the previous section, we find that the convention
for the boundaries in the totalization of the bar construction should be as
follows:

∂(m⊗ n) = (∂m)⊗ n+ (−1)|m|m⊗ (∂n)

∂(m⊗ a⊗ n) = −∂m⊗ a⊗ n− (−1)|m|m⊗ ∂a⊗ n− (−1)|m|+|a|m⊗ a⊗ ∂n
+(ma)⊗ n−m⊗ (an)

...

Namely, you have a “vertical” differential applying to terms (that gets signs
according to degree and according to moving the boundary map across terms)
and a “horizontal” differential (that only gets a (−1)i sign) from multiplying
adjacent terms.

Even verifying that ∂2 = 0 on m⊗a⊗n is annoying using an explicit formula
like this, and you might get the impression that nobody’s checked it. When
you check it, like me you will probably the signs wrong the first time, too,
but if you use the formalism you know that the signs are correct and you are
not. If nothing else, I’d like to say that you should build your conventions
around a foundation, and not the other way around.

22 Why this bar construction is annoying

The conventions of the previous section are absolutely terrible in some ways.
For one thing, we often use the bar construction B(A,A,N) as a resolution
of N as an A-module. But since we’ve tensored up with Z(∆[n]) on the left,
the structure of a left A-module is given on elementary tensors by

a · a0 ⊗ · · · ⊗ ap ⊗ n = (−1)p|a0|(aa0)⊗ · · · ⊗ ap ⊗ n.

This is annoying. Moving the simplex over to the right-hand side fixes reso-
lutions of left modules but not of right modules. Also, this construction does
not play nicely with the standard sign conventions in homological algebra.
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23 Simplices, take II

There is another way to describe the normalized chain complex associated to
the standard simplex. Namely, we can say that it is the chain complex freely
generated by elements of the form

σε0 ⊗ σε1 ⊗ · · · ⊗ σεn ⊗ α

where εi ∈ 0, 1,
∑
εi > 0, σ is viewed as having degree 1, α has degree −1,

∂σ = 1, and ∂α = 0. For example, Z(∆[2]) has generators

σ ⊗ 1⊗ α, 1⊗ σ ⊗ α, σ ⊗ σ ⊗ α

which correspond to the elements [1], [0], and [0, 1] in the standard normalized
chain complex respectively.

You could write C for a chain complex generated freely by generators σ in
degree 1, 1 in degree 0, such that ∂σ = 1. This is chain contractible, and
the normalized chain complex of ∆[n] is the quotient of C⊗(n+1) ⊗ Σ−1Z by
Z⊗(n+1)⊗Σ−1Z. This kind of description seems to be analogous to describing
an n-simplex as the convex hull of those centers of the faces of [0, 1]n+1 that
don’t touch (0, · · · , 0).

24 The bar construction, take II

Using our new description of the normalized chain complex of the standard n-
simplex as a quotient of C⊗(n+1), we can then redescribe the bar construction.
Namely,

Z(∆[p])⊗M ⊗ A⊗p ⊗N

is equivalent to a quotient of

C⊗(p+1) ⊗ Σ−1Z⊗M ⊗ A⊗p ⊗N,

and this is isomorphic to a quotient of

M ⊗ C ⊗ A⊗ C ⊗ · · · ⊗ A⊗ C ⊗N ⊗ Σ−1Z.
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This uses the symmetric monoidal structure to intersperse the tensor factors
in, in a method compatible with the simplicial realization maps. Namely, the
generators in the total complex of the form

[0, 1, . . . , p]⊗m⊗ a1 ⊗ · · · ⊗ ap ⊗ n

which come from simplicial degree p can be rewritten as

σ⊗(p+1) ⊗ α⊗m⊗ a1 ⊗ · · · ⊗ ap ⊗ n.

After permuting the appropriate tensor factors, this becomes

m⊗ σ ⊗ a1 ⊗ σ ⊗ · · · ⊗ σ ⊗ ap ⊗ σ ⊗ n⊗ α.

It is convenient to drop most of the tensor signs at this point and simply
write it in standard bar-construction notation,

m[a1| · · · |ap]n

and remember that the bars (and brackets) are actually of degree 1, and
there’s a right-hand term globally shifting everything down by one degree.
(When p = 0 the notation is less good, because there should really be only
one symbol in between m and n; it is occasionally better, but less readable,
to write it as m|a1| · · · |ap|n.)

This is still isomorphic to M ⊗ A⊗p ⊗ N , but the isomorphism induced by
all this shifting has a fairly large sign. Specifically, the transformation from
the conventions of “bar construction I” to “bar construction II” are:

m⊗ a1 ⊗ · · · ⊗ ap ⊗ n 7→ (−1)|n|+|ap−1|+|ap−3|+···

One thing to note is that the extra “shift” operator α at the right-hand
edge makes it more obvious that, when you have an A-algebra A′, any bar
construction B(−, A,A′) has a right A′-module structure that requires an
extra sign not obvious in the standard notation.

(Roughly, this is because the total degree of m[a1| · · · |ap]n in the bar complex
is one off from the sum of the degrees plus the number of bars.)
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25 Coproducts

Now suppose A is an augmented DGA over R. There is a coproduct on the
geometric realization of the bar construction B(R,A,R), which in degree p
is A⊗p.

Namely, one combines the “Alexander-Whitney” diagonal Z(∆[p])→ ⊗Z(∆[p′])⊗
Z(∆[p′′]) with the subdivision in the bar complex. This can be pretty con-
cisely expressed as a map of coends. One point to make is that if the signs
are not interspersed as in the “second” bar construction, then one needs to
use a transposition in ∆[p′] ⊗∆[p′′] ⊗ R⊗p′+p′′ to get the associated map of
bar complexes.

At any rate, this comultiplication is the standard Alexander-Whitney formula

[a1| · · · |ap] 7→
∑

p′+p′′=p

[a1| · · · |ap′ ]⊗ [ap′+1| · · · |ap].

26 Cosimplicial objects

Cosimplicial objects are defined in the same way as we defined in the same
way as we defined simplicial objects. Namely, we go back to the topological
realizations and apply them in the context of homological algebra.

So say D• is a cosimplicial chain complex. In this case, we construct a Tot-
tower of chain complexes. The zero’th part of the Tot-tower is Tot0(D•) =
F (Z(∆[0]), D0) ∼= D0. We then inductively build a sequence of pullback
diagrams as follows:

Totn(D•) //

��

Totn−1(D•)

��
F (Z(∆[n]), Dn) // F (Z(∂∆[n]), Dn)

(Again, the existence of the right-hand map requires decomposing the nor-
malized chains and defining the map one face at a time, checking that they
agree on intersections.)

17



The inverse limit is the totalization of the cosimplicial object. In degree n,
it is the product over k of the degree (n+ k)-part of Dk. The boundary map
is the confluence of numerous sign conventions now, and on the element

(a0, a1, a2, · · · )

it is given by

(∂a0, ∂a1 − d0a0 + d1a0, ∂a2 + d0a1 − d2a1 + d2a2, . . .)

(Namely, on ak it is the ordinary boundary ∂ak plus
∑k+1

i=0 (−1)k+i+1di(ak).)

There are similar descriptions of this or an equivalent realization in terms of
an end ∫

F (Z(∆[p]), Dp).

We observed that Z(∆[p]) is a quotient of a certain tensor power complex,
and this makes the Hom-complex F (Z(∆[p]), Dp) into a subcomplex of Dp⊗
ΣZ ⊗ (DC)⊗(p+1).

27 The cobar construction

As with the bar construction, the cobar construction is worth making explicit,
and it’s worth interspersing terms as well.

Suppose A is a coassociative and counital coalgebra, with left comodule N
and right comodule M . We have a cobar construction C(M,A,N) which, in
(co?)degree p, is M ⊗ A⊗p ⊗N .

By carrying out the previous program of “interspersing” we can write the co-
bar complex as generated by elementary elements. If [0, 1, . . . , p] = σ⊗(p+1)⊗
α, then its dual is α∗ ⊗ (σ∗)⊗(p+1). We can combine the duality isomor-
phism F (Z(∆[p]),−) ∼= (−) ⊗ DZ(∆[p]) with this identification, and then
intersperse elements in the following form.

m⊗ σ∗ ⊗ a1 ⊗ · · · ⊗ ap ⊗ σ∗ ⊗ n⊗ α∗

Here α∗ has degree 1 and σ∗ has degree −1. I’m going to write this in the
notation

m[a1| · · · |ap]n.
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In more direct terms, there is a correspondence between functions on the
normalized chain complex of ∆[p] and these cobar elements, given by

([0, 1, . . . , p] 7→ m⊗ a1 ⊗ · · · ⊗ ap ⊗ n)↔ (−1)p+1+|a1|+|a3|+···m[a1| · · · |ap]n.

I should point out that I left α∗ at the end rather than moving it to the
beginning. One motivation is that this makes it so that it doesn’t interfere
with my formula for the boundary operator. Here’s another, better motiva-
tion. Under this sign convention, the formula for the boundary on an element
[a] = 1[a]1, when |a| = p, is

−[∂a] +
∑

p′+p′′=p

(−1)p
′
[∆p,p′′a]

where ∆p′,p′′a is the part of the comultiplication on a that lands in Ap′⊗Ap′′ .
This is precisely the sign convention introduced in Adams’ paper on the cobar
construction.

Another motivation for this sign has to do with the multiplication, coming
up.

28 Products in the cobar construction

Now let’s suppose A is a coalgebra which is coassociative over R. Then
there’s an Alexander-Whitney comultiplication in the realization of the cobar
complex C(R,A,R) for A, coming from the diagonal in Z(∆[n]) and dividing
the tensor product A⊗p+q into A⊗p ⊗ A⊗q.

Namely, suppose f and g are basic elements in the realization of the cobar
complex, which are zero on all simplices except one:

f : [0, 1, . . . , p] 7→ a1 ⊗ · · · ⊗ apg : [0, 1, . . . , q] 7→ b1 ⊗ · · · ⊗ bq

Then fg is the function given by precomposition with the Alexander-Whitney
diagonal. It is only nonzero on the standard p+q-simplex, and is given there
by

(fg)[0, 1, . . . , p+q] = (−1)p|g|f([0, . . . , p])⊗g([0, . . . , q]) = (−1)p|g|a1⊗· · ·⊗bq.

19



Note the presence of a sign because we had to move some simplex coordinates
across g in order to apply f .

If we change to using the “interspersed” sign conventions from the previous
section, this simplifies to the formula

[a1| · · · |ap] · [b1| · · · |bq] = [a1| · · · |ap|b1| · · · |bq].

And thus all is right with the universe.

One convention (which I learned from Baues’ paper) is that you should per-
haps decorate the elements in the cobar complex with a symbol, such as
(say) Ω just to be difficult. Then an element in the cobar complex is a for-
mal product Ωa1 · · ·Ωap, with the differential being a derivation, satisfying

∂(Ωa) = (Ω⊗ Ω)∆a− Ω(∂a).

So the signs come about from moving the boundary across Ω and from moving
Ω across terms in the comultiplication.

29 Underlying lesson

Go back and read Adams first if you’re confused about the signs.
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