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Abstract. In this paper, we investigate equivariant quotients of the Real bor-

dism spectrum’s multiplicative norm MUppC2n qq by permutation summands.
These quotients are of interest because of their close relationship with higher

real K-theories. We introduce new techniques for computing the equivariant

homotopy groups of such quotients.
As a new example, we examine the theories BP ppC2n qqxm,my. These spec-

tra serve as natural equivariant generalizations of connective integral Morava
K-theories. We provide a complete computation of the aσ-localized slice spec-

tral sequence of i˚
C

2n´1
BP ppC2n qqxm,my, where σ is the real sign representa-

tion of C2n´1 . To achieve this computation, we establish a correspondence

between this localized slice spectral sequence and the HF2-based Adams spec-

tral sequence in the category of HF2 ^HF2-modules. Furthermore, we provide
a full computation of the aλ-localized slice spectral sequence of the height-4

theory BP ppC4qqx2, 2y. The C4-slice spectral sequence can be entirely recovered

from this computation.
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1. Introduction

1.1. Motivation. Let Epk,Γq be the Lubin–Tate spectrum associated to a formal
group law Γ of height h over a finite field k of characteristic 2. The Goerss–Hopkins–
Miller theorem states that Epk,Γq is a commutative ring spectrum and that there is
an action of AutpΓq on Epk,Γq by commutative ring maps. Given a finite subgroup
G of AutpΓq, we can view Epk,Γq as a G-equivariant commutative ring spectrum
via the cofree functor, and define a theory EOpk,ΓqpGq by taking the fixed points
under the action of G:

EOpk,ΓqpGq » Epk,ΓqhG.

These are the higher real K-theory spectra, so named because when the height is
1 and G is C2, these are a form of 2-completed real K-theory.

Up to an étale extension, these spectra only depend on the height of Γ and we
will suppress pk,Γq from the notation by letting

Eh “ Epk,Γq and EOhpGq “ EOpk,ΓqpGq.

The spectra EOhpGq play a central role in chromatic homotopy theory. Reasons of
their importance include:

(1) They detect interesting elements in the homotopy groups of spheres. For ex-
ample, Hill–Hopkins–Ravenel’s work on manifolds of Kervaire invariant one
[22] and Ravenel’s work [41] can be reinterpreted in terms of the Hurewicz
images of EO4pC8q and EOp´1pCpq. More recently, Li–Shi–Wang–Xu stud-
ied the Hurewicz image of EOhpC2q [35].

(2) They serve as fundamental building blocks for the Kphq-local sphere via the
theory of finite resolutions. The theory of finite resolutions was developed
by Goerss–Henn–Mahowald–Rezk [16] and expanded by Henn [20], followed
by Bobkova–Goerss [10].

(3) They are periodic theories that exhibit nice vanishing line properties [11,
29, 13]. This makes them more accessible to computations.

Historically, there have been few computations of homotopy groups of EOhpGq

for chromatic heights h ą 2 at p “ 2. At height h “ 1, these computations are well
understood via the relationship with complex and real K-theory. At h “ 2, compu-
tations are done using the close relationship of the higher real K-theories with the
spectrum tmf of topological modular forms and its analogues with level structures
[12, 4, 9, 36, 27, 26]. However, at chromatic heights h ą 2, such computations have
been out of reach for a long time, in part due to the lack of nice geometric models
for the higher real K-theories such as ko and tmf .

More recently, the work of Hill–Hopkins–Ravenel [22] has made such computa-
tions more achievable. This is the approach we take in this paper. Specifically, we
focus on the case of cyclic 2-groups, as a finite 2-subgroup of AutpΓq at p “ 2 is
either a cyclic 2-group of order 2n whenever h “ 2n´1m for m ě 1, or the quater-
nions when h “ 2m for m odd [21]. Our restriction to the case of cyclic 2-groups
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allows us to use the equivariant slice filtration and related machinery developed in
[22].

1.1.1. G “ C2. When G “ C2, there are two C2-actions: one coming from the
central subgroup C2 in AutpΓq through “formal inversion” and the other coming
from complex conjugation on the Real bordism spectrum MUR [15, 34]. Hahn and
Shi [17] produced a Real orientation

MUR ÝÑ Eh

from MUR to any Lubin–Tate spectrum at the prime 2. This Real orientation
allows us to combine the two C2-actions under one perspective, and to construct
Eh as a localization of a quotient of MUR.

After localization at 2, MUR splits as a wedge of suspensions of the Real Brown–
Peterson spectrum BPR. Let ρ2 be the regular representation. By work of Araki
[2] and Landweber [34], we have

πC2
˚ρ2

BPR – Zp2qrv̄1, v̄2, v̄3, . . .s

for generators v̄i P πC2

p2i´1qρ2
BPR whose underlying homotopy classes give generators

vi P π2p2i´1qBP for π˚BP .
In this setup, we can refine two classical families of chromatic spectra to the

C2-equivariant world. They are both constructed as quotients of BPR:

(1) The first family is the Real truncated Brown–Peterson spectrum

BPRxhy “ BPR{pv̄j | j ą hq.

The underlying non-equivariant spectrum is the classical truncated Brown–
Peterson spectrum BP xhy. The Kphq-localization of BPRxhy gives, up to
periodization, a model of Lubin–Tate theory Eh with its canonical C2-
action obtained through Goerss–Hopkins–Miller theory. These equivariant
spectra and their v̄h-localizations were first studied by Hu–Kriz [32] and
Kitchloo–Wilson [33].

(2) The second family is the Real connective integral Morava K-theory

BPRxh, hy :“ BPR{pv̄i | i ‰ 0, hq,

whose underlying spectra are the connective integral Morava K-theories.
After quotienting by 2 and periodization, we obtain the classical Morava
K-theories Kphq.

1.1.2. Larger cyclic 2-groups. In this paper, we will study the C2n -generalizations
of the integral Morava K-theories in great computational depth.

Let G be a finite subgroup of AutpΓq containing C2. Since Eh is an equi-
variant commutative ring spectrum, the norm-forgetful adjunction produces a G-
equivariant orientation map

MU ppGqq :“ NG
C2

MUR ÝÑ Eh.

Since we are working 2-locally, we can substitute MUR with BPR using Quillen’s
idempotent, thereby obtaining a map

BP ppGqq :“ NG
C2

BPR ÝÑ Eh.

This map allows us to regard
`

BP ppGqq
˘G

as a global approximation for the theory
EOhpGq.
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We will concentrate on the case G “ C2n and h “ 2n´1m in this paper. To
compute the homotopy groups πG

‹ BP ppGqq, Hill, Hopkins, and Ravenel invented
the equivariant slice spectral sequence [22]. The current approach of using the
slice spectral sequence to understand πG

‹ BP ppGqq is to pass to quotients of BP ppGqq

that generalize BPRxhy. To define these quotients, note that as in [22], the C2-
equivariant homotopy groups of BP ppGqq in degrees an integer multiple of ρ2 are

πC2
˚ρ2

BP ppGqq – Zp2qrG ¨ v̄G1 , G ¨ v̄G2 , . . .s,

where v̄Gi P πC2

p2i´1qρ2
BP ppGqq. Here, G ¨ v̄Gi denotes a set of 2n´1 elements

!

v̄Gi , γv̄
G
i , . . . , γ

2n´1
´1v̄Gi

)

,

where γ represents a generator of G and the Weyl action of G is made obvious by

the notation except for γ2n´1

v̄Gi “ ´v̄Gi . The method of twisted monoid rings [22,

Section 2] then allows one to form quotients of BP ppGqq by collections of permutation
summands of the form G ¨ v̄Gi . These quotients are the main objects of study in
this paper.

The generalizations of the Real truncated Brown–Peterson spectrum BPRxhy

and the Real connective integral Morava K-theory BPRxh, hy are the following
quotients by permutation summands:

(1) The quotient

BP ppGqqxmy :“ BP ppGqq{pG ¨ v̄Gm`1, G ¨ v̄Gm`2, . . .q

generalizes the spectrum BPRxhy. These spectra were studied in [7], where
it was shown that BP ppGqqxmy is of height ď 2n´1m ([7, Theorem 7.5]). Up
to periodization and Kphq-localization, the G-fixed points of BP ppGqqxmy

gives a model for EOhpGq. The theories BP ppGqqxmy also give a chromatic
filtration of BP ppGqq via the tower

¨ ¨ ¨ ÝÑ BP ppGqqxmy ÝÑ BP ppGqqxm ´ 1y ÝÑ ¨ ¨ ¨ ÝÑ BP ppGqqx1y. (1.1)

The slice spectral sequences for these quotients have been computed for
BPRxmy (m ě 1), BP ppC4qqx1y, and BP ppC4qqx2y [32, 26, 28].

(2) The equivariant generalization of the connective integral MoravaK-theories
are the quotients

BP ppGqqxm,my :“ BP ppGqqxmy{pG ¨ v̄G1 , . . . , G ¨ v̄Gm´1q.

Given BP ppGqqxm,my, we can apply further quotienting and localization to form
the G-spectrum

KGphq :“ NG
C2

pv̄Gmq´1BP ppGqqxm,my{G ¨ pv̄Gm ´ γv̄Gmq.

The underlying spectrum of KGphq is the 2 ¨ p2m ´ 1q-periodic Morava K-theory of
height h “ 2n´1 ¨ m, with coefficient ring

πe
˚KGphq “ F2rv̄˘

ms.

The group G acts trivially on πe
˚KGphq, but the action of G on KGphq is nontrivial

and compatible with the stabilizer group G-action on the height-h Lubin–Tate
theory.

An important feature of BP ppGqqxm,my is that its slice E2-page contains signif-
icantly fewer classes compared to the slice E2-page of BP ppGqqxmy. The lengths
of its differentials are also more concentrated in certain ranges. These properties
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enhance the computational manageability of these theories, making them ideal as
computable approximations for the equivariant truncated Brown–Peterson spectra
BP ppGqqxmy and BP ppGqq.

To this end, the main objective of this paper is to investigate quotients of BP ppGqq

by permutation summands, with a particular focus on the spectrum BP ppGqqxm,my.
By exploring the theoretical and computational properties of these equivariant in-
tegral Morava K-theories, we seek to gain a deeper understanding of the overall
structure of BP ppGqqxmy and the chromatic filtration tower (1.1).

1.2. Main results. We will now provide an outline of the paper and state our
main results. Throughout the paper, the group G “ C2n .

Section 2. In the first section of this paper, we define various equivariant quotients
by permutation summands and study their slice filtration. We begin by defining
permutation summands for BP ppGqq, which are collections of elements of the form
G ¨ v̄Gj (see Definition 2.1). Our main result in this section is the following, which
provides a simple description of the slice associated graded for quotients by permu-
tation summands:

Theorem A (Theorem 2.5). The slice associated graded of the quotient

BP ppGqq{pG ¨ v̄Gj | j P Jq

where J is a subset of the natural numbers, is the generalized Eilenberg–Mac Lane
spectrum

HZrG ¨ v̄Gi | i R Js.

Notably, Theorem A implies that the slice associated graded for BP ppGqqxm,my

is HZrG ¨ v̄Gms. We remark that our results do not depend on the specific choice
of generators of the permutation summand: we can replace v̄m by any element
s̄2m´1 in πC2

p2m´1qρ2
BP ppGqq that generates a permutation summand. To streamline

notation, we write

G ¨ S̄ “ tG ¨ s̄2j´1 | j P Ju

for S̄ “ ts̄2j´1 | j P Ju.

Section 3. In this section, we determine the chromatic heights of the generalized
integral Morava K-theory spectra BP ppGqqxm,my.

Theorem B (Theorem 3.1). The underlying spectrum of BP ppGqqxm,my has non-
trivial chromatic localizations at heights equal to rm, where 0 ď r ď 2n´1. That
is,

(1) for r “ km where 0 ď k ď 2n´1, LKprqi
˚
eBP ppGqqxm,my fi ˚, and

(2) for all other r ě 0, LKprqi
˚
eBP ppGqqxm,my » ˚.

In other words, the spectrum BP ppGqqxm,my captures chromatic information at
heights 0, m, 2m, 3m, . . ., 2n´1m.

We note that Theorem B is similar to [7, Theorem 1.9], where the underly-
ing spectrum of BP ppGqqxmy is shown to have nontrivial chromatic localizations at
heights ď 2n´1m. Furthermore, the G-actions on BP ppGqqxm,my and BP ppGqqxmy

are compatible with the G-action on E2n´1m that is induced from the Morava sta-
bilizer group.
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Section 4. In this section, we introduce our main computational tool, the local-
ized slice spectral sequence. This spectral sequence was developed in [39], and we
summarize some of its key features here.

Suppose X is a G-spectrum and H is a normal subgroup of G. The localized

slice spectral sequence is obtained by smashing the slice tower of X with rEFrHs,
where FrHs is the family containing all proper subgroups of H. By [39], the
localized slice spectral sequence converges strongly to the G-equivariant homotopy

groups of rEFrHs ^X, which is equal to the homotopy groups of pΦHpXqqG{H (see
Theorem 4.5).

When G “ H “ C2n , the localized slice spectral sequence is the aσ-localization
of the slice spectral sequence, where σ the sign representation. If G “ C2n and
H “ C2i for i ă n, then the localized slice spectral sequence is the aλi´1-localization
of the slice spectral sequence, where λi´1 is the representation that rotates the plane
by an angle of π{2n´i.

For G “ C2n , the slice spectral sequence of X is divided into different regions,
separated by the lines through the origin of slopes p2i ´ 1q, 0 ď i ď n. In [38], the
authors proved the Slice Recovery Theorem (Theorem 4.6), which states that for X
a p´1q-connected G-spectrum, the map from the original slice spectral sequence of

X to the localized slice spectral sequence of rEFrC2is ^ X induces an isomorphism
between all the differentials on or above the line of slope p2i´1 ´1q for all 1 ď i ď n.
In other words, even though the localized slice spectral sequence only computes the
geometric fixed points, its E2-page and differentials captures all the corresponding
information in the original slice spectral sequence (which computes the fixed points)
within a range.

Section 5. In this section, we present the following computational result, using the
tools discussed earlier.

Theorem C (Theorem 5.9 and Theorem 5.10). Let J Ď N, and let S̄ “ ts̄2j´1 |

j P Ju be a set of generators for permutation summands. The following hold:

(1) The aσ-localized slice spectral sequence of a´1
σ BP ppGqq{G ¨ S̄ has only non-

trivial differentials of lengths ℓpkq “ 2np2k`1 ´ 1q ` 1, where k ` 1 R J .
Moreover, for a fixed k, all the ℓpkq-differentials are multiples of a nontriv-

ial dℓpkq-differential on the class b2
k

, where b “ u2σ{a2σ.

(2) The aσ-localized slice spectral sequence of a´1
σ BP ppGqq{G ¨ S̄, which con-

verges to the homotopy groups of the G-geometric fixed points of BP ppGqq{G ¨ S̄,
completely determines all the differentials on or above the line of slope
p2n´1 ´ 1q in the slice spectral sequence of BP ppGqq{G ¨ S̄.

The computation in Theorem C is done using the Slice Differential Theorem of
Hill–Hopkins–Ravenel [22]. The quotient map

BP ppGqq ÝÑ BP ppGqq{G ¨ S̄

induces a map of the corresponding localized slice spectral sequences. The Slice
Differential Theorem produces all the differentials in the aσ-localized slice spectral
sequence of a´1

σ BP ppGqq. Using the module structure and naturality, we deduce all
the differentials in the aσ-localized slice spectral sequence of a´1

σ BP ppGqq{G ¨ S̄.
When G “ C2, the aσ-localized slice spectral sequence of a´1

σ BPR{S̄ produces
all the differentials in the slice spectral sequence of BPR{S̄. This is explained in
Corollary 5.12.
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Theorem C is used to show that, in stark contrast to the non-equivariant setting,
most of the quotients of BP ppGqq by permutation summands do not admit a ring
structure even in the homotopy category.

Theorem D (Theorem 5.16). Let J Ď N, and let S̄ “ ts̄2j´1 | j P Ju be a set of
generators for permutation summands. If there is a k P J such that pk ` 1q R J ,
then BP ppGqq{G ¨ S̄ does not have a ring structure in the homotopy category.

Section 6. In this section, we analyze the next region of the slice spectral sequence
of BP ppGqqxm,my, namely the region between the lines of slopes p2n´2 ´ 1q and
p2n´1 ´ 1q. Let G1 “ C2n´1 be the index 2 subgroup of G “ C2n . To compute the
differentials in this region, we examine the localized slice spectral sequence of

rEFrG1s ^ BP ppGqqxm,my » a´1
λn´2

BP ppGqqxm,my,

which computes the homotopy groups of the G{G1-fixed points of the spectrum

ΦG1

pBP ppGqqxm,myq.
A valuable input to computing this spectral sequence is its restriction to the

group G1, which computes the underlying homotopy groups of ΦG1

pBP ppGqqxm,myq.
Using the Mackey functor structure, we can then deduce information about the G-
equivariant spectral sequence from the simpler G1-equivariant spectral sequence.

Another important spectral sequence that comes into play is the HF2-based
Adams spectral sequence in the category of A-module spectra (as in Baker–Lazarev
[3]), where

A :“ HF2 ^ HF2.

Here, HF2 is given an A-module structure via the multiplication map A Ñ HF2.
We call this spectral sequence the relative Adams spectral sequence.

As non-equivariant spectra, there is an equivalence

ΦG1

pBP ppGqqxm,myq » A{pξi, ζi : i ‰ mq

for ξi and ζi the usual Milnor generators and their conjugates. In fact, there is an
intimate connection between the more classical relative Adams spectral sequence
and the G1-equivariant localized slice spectral sequence, which we establish in Sec-
tion 6.2.

Theorem E (Theorem 6.7, Corollary 6.8, and Corollary 6.10). After a reindexing
of filtrations, the G1-equivariant localized slice spectral sequence of BP ppGqqxm,my

is isomorphic to the relative Adams spectral sequence of A{pξi, ζi : i ‰ mq.

In Section 6.3, we apply the techniques developed in [6] and use the correspon-
dence established in Theorem E to obtain the following computational result:

Theorem F (Theorem 6.20 and Summary 6.21). We determine all the differentials
in the following two spectral sequences:

(1) the relative Adams spectral sequence of A{pξi, ζi : i ‰ mq;
(2) the G1-equivariant localized slice spectral sequence of BP ppGqqxm,my.

Theorem F demonstrates the effectiveness of our methods and allows us to pro-
ceed to the next stage of our analysis, which is to compute BP ppC4qqx2, 2y. As a con-
crete illustration of Theorem F, we present a detailed analysis of the C2-equivariant
localized slice spectral sequence of BP ppC4qqx2, 2y in Section 6.4.
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Section 7. In the final section of the paper, we provide a complete computation
of the slice spectral sequence of BP ppC4qqx2, 2y. This serves as a showcase of the
strength of our methods, and also offers insight into higher differentials phenomena
when applied to higher heights and bigger groups.

Theorem G. We determine all the differentials in the aλ-localized slice spectral
sequence of BP ppC4qqx2, 2y. The spectral sequence terminates after the E61-page and
has a vanishing line of slope p´1q on the E8-page.

By the Slice Recovery Theorem (Theorem 4.6), this computation completely
determines all the differentials in the slice spectral sequence of BP ppC4qqx2, 2y by
truncating away the region below the line of filtration s “ 0. In particular, Theo-
rem G shows that the slice spectral sequence of BP ppC4qqx2, 2y terminates after the
E61-page and has a horizontal vanishing line of filtration 61.

According to Theorem B, the underlying spectrum of BP ppC4qqx2, 2y is of heights
0, 2 and 4, and is equipped with a C4-action that is compatible with the stabilizer
group action on a height-4 Lubin–Tate theory. The computation in Theorem G is
a height-4 computation of a spectrum that is closely related to BP ppC4qqx2y, studied
in [28]. There is a map

SliceSSpBP ppC4qqx2yq ÝÑ SliceSSpBP ppC4qqx2, 2yq.

Compared to the slice spectral sequence of BP ppC4qqx2y, the slice spectral sequence
of BP ppC4qqx2, 2y has fewer classes on the E2-page, and the lengths of differentials
are concentrated in certain ranges.

The following features of the slice spectral sequence of BP ppC4qqx2, 2y are essential
to the computation in Theorem G:

(1) Differentials on or above the line of slope 1 are determined by aσ-localized
slice spectral sequence, which is computed in Theorem C.

(2) The shorter differentials (dď31) are all determined from the C2-slice differ-
entials in Theorem F and Mackey functor structures.

(3) To determine the higher differentials, we identified two key classes, α “

d̄8t̄2u24σa24λ at p48, 48q and b32 “ u32λ{a32λ at p64,´64q. Multiplication
with respect to these classes gives rise to periodicity of differentials and a
vanishing line of slope ´1 (Theorem 7.20). These phenomena determine all
the higher differentials (dą31).

We believe these features can be extended to higher heights and larger groups,
leading to a global description of all slice spectral sequence computations of quo-
tients of BP ppGqq (see Section 1.3).

1.3. Open questions and future directions. The relationship between equi-
variant and chromatic homotopy theory is an exciting landscape whose exploration
has only just begun. The results we present here reveal new aspects of the connec-
tion between G-spectra and Kphq-local phenomena. They also open questions and
suggest conjectures. We end this introduction by highlighting a few.

G-equivariant periodic Morava-K theory. In this paper, our focus has mostly been
on the theories BP ppGqqxm,my. Recall the spectrum

KGphq :“ NG
C2

pv̄Gmq´1BP ppGqqxm,my{G ¨ pv̄Gm ´ γv̄Gmq

defined at the end of Section 1.1. This spectrum is the G-equivariant generalization
of the height-hMoravaK-theory. The following questions aboutKGphq will provide
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further insights into the structure of the Morava stabilizer group and the behavior
of quotients of BP ppGqq.

Question 1.1. What is the slice filtration of KGphq and differentials in the slice
spectral sequence of KGphq?

Note that since KGphq is not a quotient by permutation summands, Theorem A
does not directly apply. Nonetheless, we have determined the slice filtration of
KGphq when G “ C2 and C4, as well as the slice differentials for all h when G “ C2,
and for h “ 2 when G “ C4.

Question 1.2. Is it possible to build an equivariant chromatic fracture square with
the theories BP ppGqqxmy, BP ppGqqxm´1y, BP ppGqqxm,my, and KGphq? In particular,
what is the relationship between BP ppGqqxm,my, KGphq, and the fiber of the map
BP ppGqqxmy Ñ BP ppGqqxm ´ 1y in the chromatic filtration of BP ppGqq?

Question 1.3. What are the Hurewciz images of BP ppGqqxm,my and KGphq, com-
pared to that of BP ppGqqxmy?

The C2-equivariant relative Adams spectral sequence. In Section 6, the correspon-
dence established in Theorem E between the relative Adams spectral sequence and
the C2-localized slice spectral sequence played a crucial role in determining the
C2-slice differentials in the localized slice spectral sequence of a´1

λ BP ppGqqxm,my.
In [19], Hahn and Wilson constructed a C2-equivariant relative Adams spectral
sequence, which can be utilized to compute the homotopy groups of NC2

e HF2-
modules. Notably, the C2-geometric fixed points of quotients of BP ppC4qq equipped
with the residue C4{C2-action are NC2

e HF2-modules. Both the C2-equivariant rel-
ative Adams spectral sequence and the C4-localized slice spectral sequence can be
used to compute the homotopy groups of such quotients.

Question 1.4. Is there an equivariant analogue of the correspondence in Theo-
rem E for BP ppC4qqxm,my and general quotients of BP ppC4qq? In particular, can
we establish a correspondence between differentials in the C2-equivariant Adams
spectral sequence and the C4-localized slice spectral sequence?

Global structures in the slice spectral sequence. Understanding the equivariant ho-
motopy groups of BP ppC4qqxm,my for all m ě 1 would significantly deepen our
knowledge of higher chromatic heights and provide valuable insight into the C4-
fixed points of height-p2mq Lubin–Tate theories. To facilitate these computations,
it is important to establish certain general properties of the localized slice spectral
sequences for these quotients.

Our computation of BP ppC4qqx2, 2y in this paper leads us to believe that cer-
tain structures, such as vanishing lines and periodicity of differentials, should be
present in the localized slice spectral sequences for all BP ppC4qqxm,my. Answering
the following questions would significantly simplify the computation of localized
slice spectral sequences for quotients of BP ppGqq.

Question 1.5. Do vanishing lines of slope p´1q always exist on the E8-pages of the
localized slice spectral sequences for BP ppGqqxm,my and other quotients of BP ppGqq?

The presence of such vanishing lines is closely linked to the existence of horizontal
vanishing lines in the slice spectral sequence for quotients of BP ppGqq, a question
raised in [13].
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Question 1.6. Do there exist analogues of the classes α and b32 that induce dif-
ferential periodicity in the localized slice spectral sequence for BP ppGqqxm,my and
other quotients of BP ppGqq?

For BP ppC4qqx1, 1y, the analogous classes are α1 “ d̄4t̄1u4σa4λ in bidegree p8, 8q

and b1 “ b8 “ u8λ{a8λ in bidegree p16,´16q. In general, let

αm “ d2
m`1

t̄m
up2m´1q2m`1σap2m´1q2m`1λ

and
bm “ b2

2m`1

“ u22m`1λ{a22m`1λ.

Conjecture 1.7. In the C4-localized slice spectral sequence of BP ppC4qqxm,my, mul-
tiplications by the classes αm and bm induce differential periodicity and a vanishing
line of slope p´1q.

1.4. Acknowledgements. The authors would like to thank Mark Behrens, Chris-
tian Carrick, Mike Hopkins, Hana Jia Kong, Guchuan Li, Yutao Liu, Lennart Meier,
Juan Moreno, Doug Ravenel, Vesna Stojanoska, Guozhen Wang, Zhouli Xu, and
Guoqi Yan for helpful conversations. This material is based upon work supported
by the National Science Foundation under Grant No. DMS-1906227 (first author),
DMS-2105019 (second author) and DMS-2313842 (fourth author).

2. Quotient modules of MU ppGqq

2.1. Slices for some MU ppGqq modules. For a graded ring R with augmentation
ideal I, let QnR denote the degree n elements in I{I2. One of the key computations
in [22] was a convenient choice of algebra generators for the ˚ρ2-graded homotopy
groups of MU ppGqq. In particular, we have an isomorphism of graded ZrGs-modules

Q˚ρ2

`

πC2
˚ρ2

MU ppGqq
˘

–
à

kě1

Σkρ2 IndGC2
pZbk

´ q,

where Z´ is the integral sign representation.

Definition 2.1. Let J Ď N and

S̄ “ ts̄j P πC2
jρ2

MU ppGqq | j P Ju

be a collection of elements. Associated to S̄, we have a C2-equivariant map

fS̄ :
à

jPJ

Σjρ2Zbj
´ Ñ

à

jPJ

Qjρ2

`

MU ppGqq
˘

.

We say that S̄ generates a permutation summand if the adjoint G-equivariant map

f̃S̄ :
à

jPJ

Σjρ2 IndGC2
pZbj

´ q Ñ
à

jPJ

Qjρ2

`

MU ppGqq
˘

is an isomorphism.

Given any element in the ROpC2q-graded homotopy of MU ppGqq, we can use the
method of twisted monoid algebras from [22]. For each j P J , we have a free
associative algebra

S0rs̄js :“
8
ł

i“0

Sijρ2 ,

and we have a canonical associative algebra map

S0rs̄js Ñ i˚
C2

MU ppGqq
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adjoint to the map defining s̄j . Using the norm maps on MU ppGqq and the multipli-
cation, we get an associative algebra map

S0rG ¨ S̄s “
ľ

jPJ

NG
C2

S0rs̄js Ñ MU ppGqq.

Definition 2.2. For J Ď N, let

MU ppGqq{G ¨ S̄ :“ MU ppGqq{
`

G ¨ s̄j | j P J
˘

“ MU ppGqq ^
S0rG¨S̄s

S0.

We call MU ppGqq{G ¨ S̄ a quotient by permutation summands.

The following is a slight generalization of the Slice Theorem of Hill–Hopkins–
Ravenel [22, Theorem 6.1]. Recall from [22] that

πC2
˚ρ2

MU ppGqq – Zp2qrG ¨ r̄1, G ¨ r̄2, . . .s

for generators r̄i in πC2
iρ2

MU ppGqq introduced in (5.39) of [22]. In fact, the conditions
on the classes s̄j guarantee that we can use them instead of the r̄j for j P J . We
then extend the set S̄ to form a set of equivariant algebra generators, as in [22,
Section 5]. Any set

S̄1 :“ ts̄j | j R Ju

of elements s̄j P πC2
jρ2

MU ppGqq which generate a permutation summand will do to

extend S̄ to a set S̄ Y S̄1 of equivariant generators for πC2
˚ρ2

MU ppGqq.

Definition 2.3. Let J Ď N and S̄ and S̄1 be as above. Define

HZrG ¨ s̄1, G ¨ s̄2, . . . s :“ HZ ^
S0

S0rG ¨ s̄1, . . .s

and

HZrG ¨ s̄1, G ¨ s̄2, . . . s{G ¨ S̄ :“ HZrG ¨ s̄1, . . . s ^
S0rG¨S̄s

S0 .

Remark 2.4. The spectrum HZrG ¨ s̄1, G ¨ s̄2, . . . s{G ¨ S̄ is very simple. In fact, it is
equivalent to HZrG ¨ S̄1s, which itself is the smash product over j R J of the norms,
in the category of HZ-modules, of HZrs̄js »

Ž8

i“0 HZ ^ Sijρ2 .

Theorem 2.5. The slice associated graded of MU ppGqq{G ¨ S̄ is the generalized
Eilenberg–Mac Lane spectrum

HZrG ¨ s̄1, G ¨ s̄2, . . . s{pG ¨ S̄q.

Proof. We have a natural equivalence

MU ppGqq{G ¨ S̄ » MU ppGqq ^
S0rG¨s̄1,... s

S0rG ¨ S̄1s.

The result now follows exactly as [22, Slice Theorem 6.1], using the natural degree
filtration on S0rG ¨ S̄1s. □

Letting S̄ be the generators killed by the Quillen idempotent, this recovers the
usual form of the slice associated graded for BP ppGqq. We could moreover always
append this to any collection S̄ we consider, which allows us to deduce all of the
analogous results for BP ppGqq. We will do so without comment moving forward.

Remark 2.6. The left action of MU ppGqq on itself always endows MU ppGqq{G ¨ S̄ with
a canonical MU ppGqq-module structure, and the same is true with BP ppGqq instead.
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Notation 2.7. In the homotopy of the spectrum BP ppGqq, let

v̄Gk :“ t̄Gk P πC2

p2k´1qρ2
BP ppGqq,

as defined and considered in [7].

Definition 2.8. For each m ě 0, let Jm “ tk | k ą mu. Let

S̄m “
␣

s̄2j´1 P πC2

p2j´1qρ2
BP ppGqq | j P Jm

(

generate a permutation summand. When for each j P Jm, s̄2j´1 “ v̄Gj , we name
the quotient

BP ppGqq{G ¨ S̄m “ BP ppGqqxmy.

More generally, we say that the BP ppGqq-module

BP ppGqq{G ¨ S̄m

is a form of BP ppGqqxmy.

Notation 2.9. Let vGk be the restriction to the trivial group of v̄Gk .

Remark 2.10. Just as in [23], we note that since the underlying rings are all poly-
nomial rings, the map

π
teu
˚ BP ppGqq Ñ π

teu
˚ BP ppGqqxmy “ Zp2qrG ¨ vG1 , . . . , G ¨ vGms

has a section.
A form of BP ppGqqxmy is a quotient module M with the property that for any

section, the composite

Zp2qrG ¨ vG1 , . . . , G ¨ vGms Ñ π
teu
˚ BP ppGqq Ñ π

teu
˚ M

is an isomorphism. The difference between the forms lies in the BP ppGqq-module
structure, not in the underlying homotopy groups.

Corollary 2.11. The slice associated graded for any form of BP ppGqqxmy is

HZrG ¨ v̄G1 , . . . , G ¨ v̄Gms.

Definition 2.12. Let k and m be natural numbers with 1 ď k ď m. Let

S̄k,m “
␣

v̄Gj | 0 ă j ă k or j ą m
(

,

and let
BP ppGqqxk,my “ BP ppGqq{G ¨ S̄k,m.

Remark 2.13. As in Definition 2.8, we also define forms ofBP ppGqqxk,my as quotients
by elements s̄2j´1, for 0 ă j ă k or j ą m that generate permutation summands.

Corollary 2.14. The slice associated graded for BP ppGqqxk,my (or for any form)
is

HZrG ¨ v̄Gk , . . . , G ¨ v̄Gms.

One of the main examples we will analyze is

BP ppGqqxm,my “ BP ppGqq{
`

G ¨ v̄G1 , . . . , G ¨ v̄Gm´1, G ¨ v̄Gm`1, . . .
˘

where m ě 1.
The slice associated graded for BP ppGqqxm,my is very simple, given by

HZrG ¨ v̄Gms.
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3. Chromatic Height of BP ppGqqxm,my

In this section, we study the underlying chromatic height of the spectraBP ppGqqxm,my.

Theorem 3.1.

(1) For r “ km where 0 ď k ď 2n´1, LKprqi
˚
eBP ppGqqxm,my fi ˚;

(2) For all other r ě 0, LKprqi
˚
eBP ppGqqxm,my » ˚.

Proof. Our proof will be similar to that of Proposition 7.4 and Theorem 7.5 in
[7]. In this proof, let X “ i˚

eBP ppGqqxm,my. For any r, there is a cofinal sequence
Jpiq “ pj0, j1, . . . , jr´1q of positive integers and generalized Moore spectra

MJpiq “ S0{pvj00 , . . . , v
jr´1

r´1 q

with maps MJpi`1q Ñ MJpiq such that

LKprqX » holimi

`

LrX ^ MJpiq

˘

.

See [31, Prop. 7.10].
Since X is a BP -module, it follows from [30, Cor. 1.10] that the natural map

Lf
rX Ñ LrX is an equivalence (since it is a BP -equivalence between BP -local

spectra). Therefore,

LrX ^ MJpiq » Lf
rX ^ MJpiq » X ^ Lf

rMJpiq » X ^ v´1
r MJpiq » v´1

r X ^ MJpiq.

Here, we have used the fact that since MJpiq is a type r spectrum, its finite lo-

calization is the telescope [37, Prop. 3.2]. We have also used the fact that Lf
r is

smashing.
To prove (1), we assume r is of the form km with 0 ď k ď 2n´1. We will first

show that under the map

BP ÝÑ v´1
r X ^ MJpiq,

the image of vr P π˚BP is nonzero. Note that

v´1
r X ^ MJpiq “ v´1

r X ^MU MU{pvj00 , . . . , v
jr´1

r´1 q “ v´1
r X{pvj00 , . . . , v

jr´1

r´1 q.

By an iterative application of the formula

v
C2n´1
r ” vC2n

r ` γnv
C2n

r `

r´1
ÿ

j“1

γnv
C2n

j pvC2n

r´j q2
j

pmod Irq

(where Ir “ p2, v1, . . . , vr´1q) in [7, Theorem 1.1], the images of vjr “ pvC2
r qj

in pπ˚Xq{pv0, . . . , vr´1q are all nonzero for j ě 1. This implies that their im-
ages are also nonzero in π˚ pX{pv0, . . . , vr´1qq. Therefore, the image of vr in

π˚pv´1
r X{pvj00 , . . . , v

jr´1

r´1 qq is nonzero. After taking the homotopy limit, the im-
age of vr under the map π˚BP Ñ π˚LKprqX will also be nonzero. It follows that
π˚LKprqX fi ˚.

To prove (2), we will consider two cases, based on the divisibility of r by m. If r
is not divisible by m, then the degree of vr, 2p2r ´ 1q, is not divisible by 2p2m ´ 1q.
However, the homotopy groups of X are concentrated in degrees that are divisible
by 2p2m ´ 1q. This implies that the multiplication by vr map

Σ|vr|X ÝÑ X

induces the zero map on homotopy, and

π˚v
´1
r X – v´1

r π˚X “ 0.
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It follows that v´1
r X » ˚ and therefore LKprqX » ˚.

Now, suppose m divides r. Let r “ km for some k ą 2n´1. The result of [7,

Proposition 7.3] implies that vr P p2, v1, . . . , vr´1q so that vqr P pvj00 , . . . , v
jr´1

r´1 q for
some q ą 0. Now,

X ^ MJpiq “ X ^MU MU{pvj00 , . . . , v
jr´1

r´1 q

and there is a Künneth spectral sequence [14, Theorem IV.4.1]

Es,t
2 “ Tor

MU˚

´s,t pπ˚X,π˚MU{pvj00 , . . . , v
jr´1

r´1 qq ùñ πt´s

`

X ^ MJpiq

˘

.

This is a cohomologically graded lower half-plane spectral sequence. As in the proof
of Theorem 7.5(2) in [7], the fact that for some q multiplication by vqr raises filtration
implies that every element in the homotopy groups of X ^ MJpiq is killed by some

finite power of vr. It follows that LKprqX “ holimi

`

v´1
r X ^ MJpiq

˘

» ˚. □

4. Localized spectral sequences

In our computations below, we will make use of various localizations of the slice
spectral sequence of quotients of MU ppGqq. In this section, we recall results from
[24] and [39] that we will use here. As a reminder, we continue to let G “ C2n .

4.1. Some notation. Here, we introduce some notation. We refer the reader to
[25] for more details.

Consider 2-local homotopy equivalence classes of representation spheres SV where
V is a finite dimensional orthogonal representation. This is a semi-group with re-
spect to the smash product. Let JOpGq be the group completion.

Definition 4.1. Define λj “ λjpGq to be the 2-dimensional irreducible real repre-
sentation of G for which the generator γ P G acts on R2 by a rotation by 2π{2n´j .
We also have the one-dimensional sign representation σn “ σpGq, for which the
generator acts by multiplication by ´1.

Note that λn´1 “ 2σn . There is an isomorphism of underlying abelian groups

JOpGq – Zt1, σn, λ0, . . . , λn´2u

where the equivalence sends SV to V .

Definition 4.2. For each representation V , there is a homotopy class

aV : S0 Ñ SV

which corresponds to the inclusion of S0 “ t0,8u. We call this the Euler class.
If V is an orientable representation of dimension d, we also get classes

uV P πd´V HZ.
We call these orientation classes.

We have commutative diagrams

S0
aλi //

aλi`1 ""

Sλi

p´q
2

��
Sλi`1

where the vertical arrow is a double cover. Therefore, aλi
divides aλi`1

for each
0 ď i ď n ´ 2.
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4.2. Localizations and isotropy separation.

Definition 4.3. For each 0 ď i ď n ´ 1, we have families

Fi “ FrC2i`1s “ tH | H Ĺ C2i`1u

and Fn “ All be the family of all subgroups of G.

These families interpolate between F0 “ teu and Fn “ All.
The universal and couniversal spaces for the family Fi can be written in very

algebraic terms.

Proposition 4.4. For 0 ď i ď n ´ 1, we have

EFi » lim
Ñ

Spkλiq “ Sp8λiq

and
rEFi » S8λi “ S0ra´1

λi
s.

Proof. The representation λi has kernel exactly C2i Ă G, and the residual action
of G{C2i is faithful. The result follows. □

We now state two results of Meier–Shi–Zeng that we will use later.

Theorem 4.5 (Meier–Shi–Zeng [39]). For X a G-spectrum with regular slice tower

P ‚X, the spectral sequence associated to the tower rEFi ^ P ‚X, which corresponds
to the aλi

-localized spectral sequence

a´1
λi

Es,t`α
2 “ a´1

λi
πG
t´s`αP

t
tX ùñ πG

t´s`αpa´1
λi

Xq, α P JOpGq

converges strongly.

Theorem 4.6 (Meier–Shi–Zeng [38]). Let X be a p´1q-connected G-spectrum. Let
Li be the line of slope p2i ´ 1q through the origin. The following statements hold:

(1) On the integer graded page, the map from the slice spectral sequence of X
to the aλi

-localized slice spectral sequence of X induces an isomorphism on
the E2-page for the classes above Li, and a surjection for the classes that
are on Li.

(2) The map of spectral sequences above induces an isomorphism between dif-
ferentials that originate from classes that are on or above Li.

In what follows, we will compute heavily with localized slice spectral sequences.
The following remark explains the advantages of this approach.

Remark 4.7. It follows from Theorem 4.6 that all the differentials in the slice spec-
tral sequence of X that are on or above Li can be immediately recovered from
the aλi

-localized slice spectral sequence of X by truncating off the latter spectral
sequence below Li. In particular, all the differentials in the slice spectral sequence
of X can be recovered by truncating off the aλ0 -inverted slice spectral sequence
below the horizontal line s “ 0.

In addition, the aλi
-localized slice spectral sequence are individually easier to

compute that the non-localized spectral sequences. Of course, by localizing, we
loose the information below the line Li, but the approach is to work inductively,
starting with the aλn´1 -localization (which is the same as the aσn -localization) and
ending with the aλ0

-localization. As we explained above, all differentials can be
recovered from the aλ0

localization so that at that stage, we have not actually lost
any information at all.
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One final remark on the advantage of computing with the aλ0
-localized spectral

sequence is that it actually records information about the slice spectral sequences

Es,t`‹
2 “ πG

t´s`‹P
t
tX ñ πG

t´s`‹X

for any ‹ “ kλ0 where k P Z. Indeed, we can recover all the differentials in the
˚ ` kλ0-graded spectral sequence by truncating the aλ0

-localized spectral sequence
below the horizontal line s “ ´2k. So, the localized spectral sequence contains
much more information than simply the integer graded spectral sequence.

5. C2n-geometric fixed points and quotients of BP ppGqq

As a proof-of-concept and for later computations, in this section, we will compute
the homotopy of the geometric fixed points

ΦGpBP ppGqq{G ¨ S̄q » p rEP ^ BP ppGqq{G ¨ S̄qG » pa´1
σ BP ppGqq{G ¨ S̄qG

of quotients by permutation summands via the aσ-localized slice spectral sequence.
On the one hand, we know the answer, since we know the homotopy type of the

geometric fixed points.

Proposition 5.1. We have a weak-equivalence of HF2-modules

ΦG
`

BP ppGqq{G ¨ S̄
˘

» HF2 ^ Σ8
`

˜

ź

jPJ

S2j

¸

.

Proof. The geometric fixed points functor is strong symmetric monoidal, and we
have

ΦGpBP ppGqqq “ HF2. □
On the other hand, the aσ-localization map of the slice spectral has a particular

simple target, and this will tell us a great deal about any of the slice spectral
sequences for these quotients.

5.1. General quotients of BP ppGqq. We now consider the aσ-localized slice spec-
tral sequence

a´1
σ Es,t

2 :“ a´1
σ πG

t´sP
t
t pBP ppGqq{G ¨ S̄q ùñ πG

t´sa
´1
σ pBP ppGqq{G ¨ S̄q.

Inverting aσ has the effect of killing the transfer from any proper subgroups. This
means that the E2-page of the aσ-localizaed slice spectral sequence has a particular
simple form:

a´1
σ E˚,‹

2 “ F2rNG
C2

s̄i | i R Jsru2σ, a
˘1
σ , a˘1

λ0
, . . . , a˘1

λn´2
s .

Definition 5.2. For each j P N, let

f̄j “ a2
j

´1
ρ̄ NG

C2
s̄j .

This definition a priori depends heavily on the choices of the s̄i. However, from
the point of view of differentials, these choices will not matter, due to a small
lemma.

Lemma 5.3. Let s̄2m´1 be any element in degree p2m ´ 1qρ2 that generates a
permutation summand. We have

NG
C2

s̄2m´1 ” NG
C2

v̄Gm mod pNG
C2

v̄G1 , . . . , N
G
C2

v̄Gm´1q ` Imptrq,

where Imptrq denotes the image of the transfer.
In particular, f̄i is independent of the choice of s̄i, modulo the lower v̄j.
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Proof. We have

πG
˚ρG

`

BP ppGqq
˘

{Imptrq – F2

“

NG
C2

v̄G1 , N
G
C2

v̄G2 , . . .
‰

,

and the map
x ÞÑ NG

C2
x

gives a ring homomorphism

πC2
˚ρ2

BP ppGqq Ñ πG
˚ρG

`

BP ppGqq
˘

{Imptrq.

Additionally, Weyl equivariance of the norm shows that for any γ P G,

NG
C2

pγxq “ γNG
C2

pxq ” NG
C2

pxq mod Imptrq.

The lemma can be restated as saying that for any generator

s̄2m´1 P Qp2m´1qρ2

`

πC2
˚ρ2

BP ppGqq
˘

,

we have
NG

C2
s̄2m´1 “ NG

C2
v̄Gm P Qp2m´1qρG

`

F2rNG
C2

v̄G1 , . . . s
˘

.

The above argument shows that the norm is a Weyl-equivariant ring homomor-
phism, and hence it induces a linear map

´

Qp2m´1qρ2

`

πC2
˚ρ2

BP ppGqq
˘

¯

G
Ñ Qp2m´1qρG

`

F2

“

NG
C2

v̄G1 , . . .
‰˘

.

Both the source and target are isomorphic to F2, and choosing v̄Gm as the generator
of the source shows the map to be non-zero. It is therefore non-zero on any generator
for the source. □
Corollary 5.4. The E2-term for the aσ-localized slice spectral sequence for BP ppGqq

is given by
F2ra˘1

σ , a˘1
λn´2

, . . . , a˘1
λ0

srb, f̄1, . . . s,

where the bidegree of f̄i is
`

2i ´ 1, p2n ´ 1qp2i ´ 1q
˘

and where the bidegree of

b “ u2σ{a2σ

is p2,´2q.

Corollary 5.5. For any S̄, the aσ-localized slice spectral sequence for BP ppGqq{G ¨ S̄
is a module over that for BP ppGqq, and the E2-term is the quotient

F2ra˘1
σ , a˘1

λn´2
, . . . , a˘1

λ0
srb, f̄1, . . . s{

`

f̄j | j P J
˘

We start with examining the aσ-localized slice spectral sequence for BP ppGqq,
since all other cases are modules over this.

Proposition 5.6. Let s̄i for i P N be any choice of permutation summand genera-
tors for πC2

˚ρ2
BP ppGqq.

Then in the aσ-localized slice spectral sequence for BP ppGqq, the differentials are
determined by

dℓpkqpb2
k

q “ f̄k`1, ℓpkq :“ 2np2k`1 ´ 1q ` 1, k ě 0. (5.1)

Proof. Lemma 5.3 shows that

f̄j ” a
p2j´1q
ρ̄ NG

C2
v̄Gj

modulo the earlier generators f̄i with i ă j, so the Slice Differentials Theorem of
[22] implies that we have the differentials (5.1). □
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Remark 5.7. The f̄i all lie on the line of slope 2n ´ 1 through the origin in the
pt´s, sq-plane. This is a vanishing line for both the spectral sequence of a´1

σ BP ppGqq

and that of quotient by permutation summands, so the differential in (5.1) is the
last possible on b2

n

.

We next use this result to study the aσ-localized slice spectral sequence of other
quotients.

Definition 5.8. Let ApJq be the set of non-negative integers r such that the dyadic
expansion r “ ε0 ` ε1 ¨ 2 ` ε2 ¨ 4 ` . . . satisfies εi “ 0 if i ` 1 R J .

Theorem 5.9. The aσ-localized slice spectral sequence of a´1
σ pBP ppGqq{G ¨ S̄q can

be completely described as follows:

(1) the only non-trivial differentials are of lengths ℓpkq “ 2np2k`1 ´ 1q ` 1 for
some k ě 0.

(2) The Eℓpkq-page is the module over

F2rf̄i | i ě k ` 1 and i R Jsrb2
k

s

generated by the set of permanent cycles br where 0 ď r ă 2k and r P ApJq.
(3) If k ` 1 R J , then there are non-trivial differentials are multiples of

dℓpkqpb2
k

q “ f̄k`1

by the dℓpkq-cycles

F2rf̄i | i ě k ` 1 and i R Jsrb2
k`1

stbr | r ă 2k and r P ApJqu.

There are no other differentials of that length.
(4) If k ` 1 P J , then Eℓpkq “ Eℓpk`1q.
(5) Consequently, E8 – F2tbr | r P ApJqu .

Proof. We will prove the statements by induction on k. For the base case when
k “ 0, we have ℓp0q “ 2n`1. The first possible non-trivial differential by sparseness
is dℓp0qpbq “ f̄1. Therefore, Eℓp0q “ E2 and the class b0 is a permanent cycle. The
claims hold.

Now, suppose that the Eℓpkq-page is as claimed. If k ` 1 P J , then b2
k

is a dℓpkq-
cycle, and hence a permanent cycle. Any element on the Eℓpkq-page of the form br

with r ă 2k`1 is of the form r1 ` εk ¨ 2k for r1 ă 2k with r1 P ApJq and εk P t0, 1u.
Since k`1 P J , r P ApJq. Using the module structure over the aσ-localized spectral
sequence of a´1

σ BP ppGqq, the elements br are also dℓpkq-cycles. By sparseness of the
Eℓpkq-page, it is impossible for br to support a differential of length longer than ℓpkq

because there are no possible targets. Therefore, the elements br are permanent
cycles. This implies that Eℓpkq “ Eℓpk`1q which proves our claims when k ` 1 P J .

On the other hand, if k ` 1 R J , we have a non-trivial differential dℓpkqpb2
k

q “

f̄k`1. For α ě 1, consider the element f̄ f̄α
k`1b

r`2kt with 0 ď r ă 2k, t ě 0 even,

and f̄ a monomial in the f̄i’s for i ą k ` 1 and i R J . Such an element is the target

of the dℓpkq-differential on f̄ f̄α´1
k`1 b

r`2kpt`1q. It follows that the Eℓpkq`1-page is a
polynomial algebra over

F2rf̄i | i ě k ` 2 and i R Jsrb2
k`1

s

generated by the already established permanent cycles br, r ă 2k. Since k ` 1 R J ,
the set tr P ApJq | r ă 2k`1u is equal to tr P ApJq | r ă 2ku. This completes the
induction step. □
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As an immediate consequence, using Theorem 4.6, we have:

Theorem 5.10. In the integer graded slice spectral sequence

Es,t
2 “ πG

t´sP
t
tBP ppGqq{G ¨ S̄ ñ πt´sBP ppGqq{G ¨ S̄,

we have:

(1) Above the line of slope 2n´1 ´ 1, the E2-page is isomorphic to the integer
graded part of the E2-page of the aσ-localization of the spectral sequence, as
described in Corollary 5.5.

(2) The only non-trivial differentials whose sources lie on or above the line
of slope 2n´1 ´ 1 are in one-to-one correspondence with the non-trivial
differentials of the integer graded aσ-localized slice spectral sequence above
this line. They are of lengths ℓpkq for k ` 1 R J , and are generated under
the module structure of the spectral sequence for BP ppGqq by the differentials

dℓpkqpu2k

2σq “ a2
k`1

σ a2
k`1

´1
ρ̄ NG

C2
s̄2k`1´1

for k ` 1 R J .

We will now give some examples to illustrate the results above. We start with
example for the group G “ C2. Since v̄j ” v̄k`1 modulo the previous v̄j ’s, we write
v̄k`1 “ s̄2k`1´1, but any choice of permutation summand generators gives the same
results.

Example 5.11. Consider BPR{S̄ for S̄ “ ts̄2j´1 | j P Ju. The E2-page are the
aσ-localized slice spectral sequence is

a´1
σ E˚,‹

2 “ F2rv̄i | i R Jsru2σ, a
˘1
σ s,

the non-trivial differentials are generated by d2k`2´1pb2
k

q “ f̄k`1 and

E˚,‹
8 – F2ra˘1

σ stbr | r P ApJqu.

Figure 1 shows the example for BPRx2y.

In this case, using Theorem 4.6 as in Theorem 5.10 together with the fact that
the aσ-localized spectral sequence records information about many JOpC2q degrees
of the slices spectral sequence (as noted in Remark 4.7), we can easily describe a
large part of the (unlocalized) JOpC2q-graded slice spectral sequence of BPR{S̄.

Corollary 5.12. Let JOpC2q` Ď JOpC2q be the elements of the form a ` bσ with
a ´ b ě 0. The JOpC2q` graded slice E2-page of BPR{S̄ is

E˚,‹
2 – Zp2qrv̄i | i R Jsru2σ, aσs{p2aσq, ‹ P JOpC2q` . (5.2)

(1) The only non-trivial differentials are of lengths p2k`2 ´ 1q for some k ě 0.
(2) If k ` 1 R J , then the nontrivial-differentials are multiples of

d2k`2´1pu2k`r
2σ q “ v̄k`1u

r
2σa

2k`2
´1

σ , r P ApJq

by the d2k`2´1-cycles F2rv̄i, aσ | i ě k ` 1 and i R Js.
(3) If k ` 1 P J , then E2k`2´1 “ E2k`3´1.
(4) Consequently, the E8-page is

E˚,‹
8 – Zp2qrv̄i | i R Jsraσs{p2aσ, v̄ia

2i`1
´1

σ qtur
2σ, 2u

s
2σ | r P ApJq, s R ApJqu.
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Figure 1. The aσ-localized slice spectral sequence of a´1
σ BPRx2y

in integer degrees. The slice spectral sequence of BPRx2y is ob-
tained by removing the region below the horizontal line s “ 0 and
replacing ‚ “ Z{2 by copies of Z, which reintroduces the transfers.

As an explicit example, we show the computation of the slice spectral sequences
of BPRx2, 2y, deduced from that of a´1

σ BPRx2, 2y. The computation is illustrated
in Figure 2.

Remark 5.13. On the E8-page of BPRx2, 2y (the third picture of Figure 2), there is
an exotic extension η “ v̄1aσ, as shown by the dashed line. This extension follows
from the work in [8]. More precisely, letting pn, k, bq “ p2, 1, 0q in Corollary 3.11 of
[8] gives the exotic π‹MUR-multiplication v̄1u2σ “ v̄2a

4
σ. It follows that

pv̄2aσu2σq ¨ pv̄1aσq “ pv̄2a2σq ¨ pv̄1u2σq “ pv̄2a2σq ¨ pv̄2a4σq “ v̄22a
6
σ.

For the next two examples, the group G “ C4 with generators s̄2i´1 “ v̄Gi , but
any choice of permutation summand generators gives the same results.

Example 5.14. Consider BP ppC4qqx2y, so that J “ tj P N | j ą 2u. The E2-page are
the aσ-localized slice spectral sequence is

a´1
σ E˚,˚

2 – F2rf̄1, f̄2, bs .

The spectral sequence has two types of differentials, namely

d5pbq “ f̄1, and d13pb2q “ f̄2 .

The class b4 is a permanent cycle, and we have

πC4
˚ a´1

σ BP ppC4qqx2y – F2rb4s.

The computation is illustrated in Figure 3.

Example 5.15. Consider BP ppC4qqx2, 2y. In this case, the E2-page are the aσ-
localized slice spectral sequence is

a´1
σ E˚,˚

2 “ F2rf̄2, bs .
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Figure 2. The aσ-localized slice spectral sequences of
a´1
σ BPRx2, 2y (top). The middle figure is the slice spectral

sequence of BPRx2, 2y and the bottom is its E8-page. A ˝ denotes
Zp2q, a ‚ denotes Z{2.

There is only one family of differentials, generated by

d13pb2q “ f̄2

and the answer is

πC4
˚ a´1

σ BP ppC4qqx2, 2y – F2rb4st1, bu .

The computation is illustrated in Figure 4.

5.2. Application: Multiplicative structure. While the left action of MU ppGqq

on itself always endows MU ppGqq{G ¨ S̄ with a canonical MU ppGqq-module structure,
and the same is true with BP ppGqq instead, much less is known for ring structures.
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Figure 3. The aσ-localized slice spectral sequence of a´1
σ BP ppC4qqx2y.

We do have the following restrictive condition on quotients as a straightforward
consequence of the techniques introduced above.

Theorem 5.16. Let J Ď N and S̄ “ ts̄2j´1 | j P Ju be a set of generators for

permutation summands. If there is a k P J such that pk`1q R J , then BP ppGqq{G ¨ S̄
does not have a ring structure in the homotopy category.

Proof. If there is a ring structure on BP ppGqq{G ¨ S̄, then the map BP ppGqq{G ¨

S̄ Ñ HZ to the zero slice induces a map of multiplicative spectral sequences.
This remains true after inverting aσ. Since πG

˚ pa´1
σ HZq – F2rbs and the map

from πG
˚ pa´1

σ BP ppGqq{G ¨ S̄q to πG
˚ pa´1

σ HZq is the natural inclusion, the former is

a subring of the latter. However, if k P J and k ` 1 R J , then b2
k´1

is nonzero in

πG
˚ pa´1

σ BP ppGqq{G ¨ S̄q, but its square b2
k

is zero. This is a contradiction. □

Put another way, Theorem 5.16 says that the only possible BP ppGqq-module quo-
tients BP ppGqq{G ¨ S̄ by permutation summands which could be rings are the forms
of BP ppGqqxmy. Even here, we know very little.

Example 5.17. For G “ C2, BPRx1y “ kR and tmf1p3q is a form of BPRx2y. Both
admit commutative ring structures. For m ą 2 we do not know if BPRxmy admits
an associative ring structure.

For G “ C4, tmf1p5q is a form of BP ppC4qqx1y. For m ą 1, we do not know if
BP ppC4qqxmy admits even an associative ring structure.

If we instead look only at the underlying spectrum, then work of Angeltveit
and of Robinson shows that we have nice ring structures [1, 42]. This has been
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Figure 4. The aσ-localized slice spectral sequence of a´1
σ BP ppC4qqx2, 2y.

refined by Hahn–Wilson to show that this is still true in the category of MU ppGqq

or BP ppGqq-modules [18].

Proposition 5.18. For any J Ď N and for any S̄, the spectrum

i˚
eBP ppGqq{G ¨ S̄

is an associative i˚
eBP ppGqq-algebra spectrum.

Proof. The assumptions on S̄ ensure that the sequence
`

γis̄j | 0 ď i ď 2n´1 ´ 1, j P J
˘

forms a regular sequence in the homotopy groups of the even spectrum i˚
eBP ppGqq.

The result follows from [18, Theorem A]. □

Remark 5.19. The Hahn–Shi Real orientation shows the restriction to C2 of the
spectrum BP ppGqq{G ¨ S̄ always admits an Eσ-algebra structure [17].

6. The C2n´1-geometric fixed points

Let G1 “ C2n´1 , the subgroup of index two in G “ C2n . We extend the re-
sults of the previous section, considering the aλn´2

-localized slice spectral sequence
for permutation quotients. This is again a spectral sequence of Mackey functors,
now essentially for C4 – G{C2n´2 . In this section, we study the C2 – G1{C2n´2 -
equivariant level, since we can tell an increasingly complete story here. The C4-fixed
points are more subtle, as we will see in Section 7.
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Note that since
i˚
G1λn´2 “ λpn´1q´1 “ 2σ,

the restriction to G1 of the aλn´2-localized slice spectral sequence for BP ppGqq{G ¨ S̄
is the aσ-localized slice spectral sequence for

i˚
G1BP ppGqq{G ¨ S̄.

Just as for the G-geometric fixed points, we start by identifying the homotopy type.
In this case, since

i˚
G1BP ppGqq » BP ppG1

qq ^ BP ppG1
qq,

we have
ΦG1

BP ppGqq » HF2 ^ HF2,

and all of the geometric fixed points we consider will take place in the category of
modules over

A “ HF2 ^ HF2.

Composing with the localization map

i˚
G1BP ppGqq Ñ rEP ^ i˚

G1BP ppGqq,

the element NG1

C2
s̄i gives us a polynomial in the dual Steenrod algebra.

Definition 6.1. Let gi P πiA be the image of NG1

C2
s̄i.

Note that the residual C2 – G1{C2n´2 -action interchanges

NG1

C2
s̄i and γNG1

C2
s̄i,

while acting as the conjugation in the dual Steenrod algebra.

Lemma 6.2. The G1-geometric fixed points of BP ppGqq{G ¨ S̄ are the A-module

A{pgi, ḡi | i P Jq.

In general, the homotopy type of this module very heavily depends on the choices
of generators. We have several cases where we can explicitly identify the images,
however. Using [22, Proposition 2.57] and [39, Proposition 6.2], we see that for
Hill–Hopkins–Ravenel generators vGi of BP ppGqq, the G1-geometric fixed points of
their norms satisfy

ξi “ ΦG1

NG
C2

vGi

ζi “ ΦG1

NG
C2

γvGi ,

where ξi are the Milnor generators of the mod 2 dual Steenrod algebra, and ζi are
their dual.

6.1. Forms of BP ppGqqxk,my. We can get much more explicit answers for the geo-
metric fixed points with certain forms of BP ppGqqxk,my, since here we can identify
the geometric fixed points of the norms exactly.

Corollary 6.3. The G1-geometric fixed points of BP ppGqqxk,my are given by the
A-module

A{
`

ξi, ζi | i ă k or i ą m
˘

» A{
`

ξi, ζi | i ă k
˘

^
A
A{

`

ξj , ζj | j ą m
˘

.

Writing this module in several ways makes working with this easier, as we can
connect this with a series of modules and computations studied in [6].
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Definition 6.4. For any subset I of the natural numbers, let

MI “
ľ

iPI

A{pξiq and M I “
ľ

iPI

A{pζiq.

Let
Rk “ EndA

`

Mt1,...,k´1u

˘

and let
Axmy “ Mtm`1,m`2,... u.

As the endomorphisms of a module, Rk is always an associative algebra. By [6],
for any m, Axmy and Axmy are associative algebras as well. More surprisingly, by
[6], we have

Rk » ΣMt1,...,k´1u ^
A
M t1,...,k´1u,

which allows us to rewrite ΦG1

BP ppGqqxk,my.

Corollary 6.5. For any k ď m, we have

ΦG1

BP ppGqqxk,my » ΣRk ^
A
Axmy ^

A
Axmy,

the suspension of an associative A-algebra.

The extreme case of this is BP ppGqqxm,my.

Corollary 6.6. The G1-geometric fixed points of BP ppGqqxm,my are given by the
A-module

ΣRm ^
A
Axmy ^

A
Axmy.

The homotopy of this A-module is more complicated than one might have ini-
tially expected. These kinds of modules were studied by the authors [6], where we
used a Baker–Lazarev style Adams spectral sequence based on HF2-homology, but
in the category of A-modules [3]. A remarkable feature of the case of BP ppGqqxm,my

is that this relative Adams spectral sequence completely determines the aσ-localized
slice spectral sequence.

6.2. A comparison of spectral sequences. Let P‚ “ P‚BP ppGqqxm,my be the
slice covering tower of BP ppGqqxm,my. That is, Pt is the homotopy fibre of the
cannonical map

BP ppGqqxm,my Ñ P t´1BP ppGqqxm,my

where P ‚ “ P ‚BP ppGqqxm,my is the regular slice tower.
The slices P t

tBP ppGqqxm,my are non-trivial only in dimensions of the form t “

2ip2m ´ 1q. Therefore we can “speed-up” the slice tower without losing any infor-
mation. Define

P̃t “ P2tp2m´1q .

This re-indexes the slice tower, so that

P̃ t
t “ P

2tp2m´1q

2tp2m´1q
BP ppGqqxm,my.

Since there is an equivalence

ΦG1

BP ppGqq » HF2 ^ HF2 “ A,

ΦG1

P̃‚ is a covering tower converging to ΦG1

BP ppGqqxm,my in the category of A-
modules.
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Theorem 6.7. The tower ΦG1

P̃‚BP ppGqqxm,my is an HF2-Adams resolution of

ΦG1

BP ppGqqxm,my in the category of A-modules.

Proof. Let Q‚ “ ΦG1

P̃‚BP ppGqqxm,my for convenience. Then Q‚ is an HF2-Adams

resolution of Q0 “ ΦG1

BP ppGqqxm,my in A-modules if the following conditions are
met for each i ě 0 [40, Def. 2.2.1.3]:

(1) Qi
i is a wedge of suspensions of HF2’s, and

(2) the map Qi Ñ Qi
i is monomorphic in HF2-homology.

We now verify the first condition. By definition,

Q0
0 “ ΦG1

P 0
0BP ppGqqxm,my “ ΦG1

HZ “ HF2rbs,

with A-module structure defined by the geometric fixed points of the reduction map
BP ppGqq Ñ HZ. By [22, Prop. 7.6], for each i, vGi and its conjugate γvGi act trivially

on HZ, thus the geometric fixed points of NG1

C2
vGi and NG1

C2
γvGi , which are ξi and

ζi, act trivially on HF2rbs. Therefore, as an A-module, Q0
0 »

Ž8

j“0 Σ
2jHF2. The

Slice Theorem [22, Thm. 6.1] implies that for i ą 0, Qi
i is a wedge of suspensions

of Q0
0, thus the first condition is met.

We verify the second condition by an alternative construction of the slice covering
tower of BP ppGqqxm,my. As in [22, §6], let R “ S0rG ¨ vGms be the homotopy
refinement of BP ppGqqxm,my, and Mi be the subcomplex of R consisting of spheres
of dimension ě 2ip2m ´ 1q. The arguments in [22, §6.1] tell us that

P̃i » BP ppGqqxm,my ^R Mi.

Notice that G1-equivariantly, Mi`1 Ă Mi is the sub R-module pvGm, γvGmqMi, thus
the quotient Mi{Mi`1 is equivalent to Mi{pvGm, γvGmqMi. Taking the G1-geometric
fixed points on the cofibration

BP ppGqqxm,my ^R Mi`1 Ñ BP ppGqqxm,my ^R Mi Ñ BP ppGqqxm,my ^R Mi{Mi`1,

we obtain the cofibration

Qi`1 Ñ Qi Ñ Qi
i » Qi{pξm, ζmqQi

because ΦG1

NG1

C2
vGm “ ξm and ΦG1

NG1

C2
γvGm “ ζm. Since ξm and ζm have trivial

image under A Ñ HF2, the map Qi Ñ Qi
i induces a monomorphism in HF2-

homology. □

Corollary 6.8. We have an isomorphism of spectral sequences between the relative
Adams spectral sequence for A{pξi, ζi | i ‰ mq and the speeded-up aσ-localized slice
spectral sequence for i˚

G1BP ppGqqxm,my.

The dictionary here can be a little confusing, due to the scaling in the slice
filtration. We record the un-scaled version here:

Remark 6.9. A relative Adams dr corresponds to an ordinary aσ-localized slice
differential d2p2m´1qr`1.

Corollary 6.10. The integer graded E2m`1-page of the G1-equivariant aσ-localized
slice spectral sequence of i˚

G1BP ppGqqxm,my computing πG1

˚ a´1
σ i˚

G1BP ppGqqxm,my is
isomorphic to the E2-page of the relative Adams spectral sequence of the spectrum
ΦG1

i˚
G1BP ppGqqxm,my.
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6.3. The Relative Adams spectral sequence for ΦG1

i˚
G1BP ppGqqxm,my. By

Corollary 6.6, the G1-geometric fixed points of BP ppGqqxm,my are a suspension of
an associative ring spectrum. Because of this, we instead work with the associative
algebra, since then the spectral sequence will be one of associative algebras.

One of the most surprising results from [6] was a decomposition of Axmy ^
A

Axmy, and hence of further quotients, into simpler, finite pieces. This makes our
computations even easier.

Definition 6.11. For each m ě 1, let

Ãxmy “ Axmy ^
A
M tm`1,...,2mu.

Proposition 6.12 ([6, Corollary 5.6]). For each m, we have a decomposition of
A-modules

Axmy ^
A
Axmy »

ł

kě0

Σ22m`1kÃxmy.

Proposition 6.13 ([6, Theorem 5.9]). There is an associative algebra structure on

Ãxmy such that the projection map

Axmy ^
A
Axmy Ñ Ãxmy

is a map of associative algebras.

This reduces the study of modules of the form

M ^
A
Axmy ^

A
Axmy

to the study of Ãxmy-modules of the form

M ^
A
Ãxmy.

We apply this in the case ofM “ Rm, where we again have an associative algebra
structure.

Definition 6.14. Let

Rxmy “ Rm ^
A
Ãxmy.

By [6], the E2-page of the relative Adams spectral sequence of Rxmy is given by

F2rξ1, . . . , ξm, es{e2
m

b Epβ-2, β-4, . . . , β-2m´1q{
`

ξi ` ξi`1β-2i | 1 ď i ď m ´ 1
˘

,

where the bidegrees are given by:

|e| “ p2m`1, 0q

|ξm| “ p2m ´ 1, 1q

|β-k| “ p´k, 0q.

Since for 1 ď i ă m, we have the relation

ξi “ ξi`1β-2i ,

this simplifies as an algebra to

F2rξms b Epβ-2, β-4, . . . , β-2m´1q b F2re2m`1s{pe2
m

2m`1q.
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Notation 6.15. We will use the following convenient notation:

βp2ϵ1 ` 4ϵ2 ` . . . ` 2m´1ϵm´1q :“ βϵ1
-2β

ϵ2
-4 ¨ ¨ ¨β

ϵm´1

-2m´1 .

We get elements,
βp0q, βp2q, . . . , βp2m ´ 2q

where βpℓq has degree ´ℓ. Note that, as element on the E2-page for Rxmy, for
0 ď ℓ ď ℓ1

βpℓqβpℓ1q “

#

βpℓ1q ℓ “ 0
´

`

ℓ1

ℓ

˘

´ 1
¯

βpℓ ` ℓ1q ℓ ą 0 .
(6.1)

In [6], we determined a number of differentials in these kinds of relative Adams
spectral sequences.

Proposition 6.16 ([6, Corollary 7.5]). In the relative Adams spectral sequence for
rAxmy, for each 1 ď i ď m and n ě 0, we have differentials

d1`2i`1pe2
i
`2i`1nq “ ξ2

i`1

m ξi`1 ¨ e2
i`1n.

The spectrum Rxmy is an rAxmy-algebra. Therefore, by naturality and the rela-
tions on the E2-page, in the relative Adams spectral sequence of Rxmy there are
differentials

d1`2i`1pe2
i
`2i`1nq “ ξ1`2i`1

m e2
i`1nβp2m ´ 2i`1q (6.2)

for 0 ď i ď m ´ 1 and 0 ď n ă 2m´pi`1q, provided that the target survives to the
E1`2i`1-page. We will see that all other differentials will be determined by these
and the multiplicative structure of the spectral sequence.

We start with two useful lemmas.

Lemma 6.17. If d1`2rpβpℓqekq is non-zero, then

d1`2rpβpℓqekq “ ξ1`2r
m βpℓ ` 2m ´ 2rqek´r

for some 1 ď r ď k.

Proof. Let

d1`2rpβpℓqekq “ ξ1`2r
m βpℓ1qek

1

.

Then k1 ď k so we let s be a number such that k1 “ k ´ s. Note that 0 ď s ă 2m

and 0 ă r ă 2m. Computing degrees, we obtain the equation

2m`1k ´ ℓ ´ 1 “ p2m ´ 1qp1 ` 2rq ` 2m`1pk ´ sq ´ ℓ1 (6.3)

This simplifies to
´2m ` pℓ1 ´ ℓq ` 2r “ 2m`1pr ´ sq.

Since 0 ď ℓ, ℓ1 ď 2m ´ 2, we have

2 ´ 2m ď ℓ1 ´ ℓ ď 2m ´ 2.

Furthermore, since 0 ă r ă 2m, 0 ă 2r ă 2m`1. Therefore the absolute value of
´2m `pℓ1 ´ℓq`2r is less than 2m`1. The equation above implies that this quantity
is divisible by 2m`1. This implies that both sides of the equation must be zero. It
follows that r “ s and ℓ1 “ ℓ ` 2m ´ 2r. □

The next lemma is a straightforward but annoying exercise analyzing inequalities
and we do not include the proof here.



ON THE SLICE SPECTRAL SEQUENCE FOR QUOTIENTS 29

Lemma 6.18. Consider pairs pℓ, kq, where ℓ is even and 0 ď ℓ, k ď 2m ´1. Define
subsets of such pairs by

S “ tpℓ, kq : k ď ℓu, and S1 “ tpℓ, kq : ℓ ă ku

as follows. Let k ď ℓ. Set

j “ max

"

0 ď r ď m ´ 1 :

ˆ

ℓ

2r

˙

” 0 mod 2

*

,

i “ min

"

j ď r ď m ´ 1 :

ˆ

k

2r

˙

” 0 mod 2

*

.

Then letting
ϕpℓ, kq “ pℓ ´ p2m ´ 2i`1q, k ` 2iq

gives a bijection ϕ : S Ñ S1.

Remark 6.19. If ℓ ă k and we fix i ě 0, then for 2i ď κ ă 2i`1 and κ´2i ď ℓ ă κ, if
k can be written in the form k “ κ`2i`1n, then ϕ´1pℓ, kq “ pℓ`2m ´2i`1, k´2iq.
This formulation of the above bijection will be useful for proving the next result.

Theorem 6.20. In the relative Adams spectral sequence of Rxmy, for

0 ď k, ℓ ď 2m ´ 1

with ℓ even, we have the following:

(1) the class βpℓqek is a permanent cycle if and only if k ď ℓ;
(2) if ℓ ă k, the class βpℓqek supports a non-trivial differential, determined as

follows. Fix i ě 0. For 2i ď κ ă 2i`1 and κ´ 2i ď ℓ ă κ, if k “ κ` 2i`1n,
then there is a differential

d1`2i`1pβpℓqekq “ ξ1`2i`1

m βpℓ ` 2m ´ 2i`1qek´2i .

These are the only non-trivial differentials.

Proof. This is a multiplicative spectral sequence. At E2-page, there is a vanishing
line of slope 1{p2m´1q with intercept on the pt´sq-axis at 2m´2 (the vanishing line
is formed by the ξm-multiples on βp2m ´ 2q). Furthermore, looking at the map of

spectral sequences from rAxny, we see that the class e2
i

survives to the E1`2i`1-page

for 1 ď i ď m ´ 1. Therefore, the differentials dr are e2
i

-linear for r ă 2i`1 ` 1.
The first non-zero class in positive filtration is ξmβp2m ´ 2q which has topological
degree p2m ´ 1q ´ p2m ´ 2q “ 1. Therefore, every element of Epβq is a permanent
cycle and the spectral sequence is one of modules over this exterior algebra.

We will prove the following statements inductively on 0 ď j ď m ´ 1:

(1) For 2j ď k ă 2j`1, if k ´ 2j ď ℓ ă k, then

d1`2j`1pβpℓqek`2j`1nq “ ξ1`2j`1

m βpℓ ` 2m ´ 2j`1qek´2j`2j`1n .

(2) For 2j ď k ă 2j`1 and k ď ℓ, the class βpℓqek is a permanent cycle.
(3) There are no other non-trivial differentials until the E1`2j`2-page.

We note that (1) and (2) inductively imply that any class βpℓqek with k ă 2j`1

either supports a differential dr for r ď 1 ` 2j`1, or is a permanent cycle.
To prove the inductive claim, we start with j “ 0, so that k “ 1 in (1). Using

that ℓ is even, in (1), the range forces ℓ “ 0. The first possible non-trivial differential
for degree reasons is on e, and this differential is forced by the d3-differential

d3peq “ ξ3mβp2m ´ 2q



30 AB, MAH, TL, XDS, AND MZ

in rAxny. All d3-s are then determined by e2-linearity and given by

d3pe1`2nq “ ξ3mβp2m ´ 2qe2n.

Here, we have used the fact that the differentials are linear over F2rξms b Epβq.
For degree reasons, the classes βpℓqe for ℓ ě 2 are permanent cycles, proving (2).
The differentials are e2-linear and all other classes that could support a d3 are the
product of e2 with permanent cycles. So they survive to the E5-page.

Let i ą 0 and assume that (1), (2), (3) hold for smaller values of 0 ď j ă i.

As noted above, the differentials in the spectral sequence of rAxmy implies the
differentials

d1`2i`1pe2
i
`2i`1nq “ ξ1`2i`1

m βp2m ´ 2i`1qe2
i`1n,

provided that the targets survive to the E1`2i`1-page. By the induction hypothesis
and Lemma 6.18, this is the case. This proves the differential of (1) for k “ 2i and
ℓ “ 0.

Now, choose k and ℓ so that 2i ď k ă 2i`1 and k ´ 2i ď ℓ ă k as in (1).

In particular, ℓ ą 0. The class rβpℓqek´2is is a permanent cycle by the induction
hypothesis. Therefore,

d1`2i`1pβpℓqek`2i`1nq “ d1`2i`1prβpℓqek´2ise2
i
`2i`1nq

“ rβpℓqek´2isd1`2i`1pe2
i

qe2
i`1n

“ rβpℓqek´2isξ1`2i`1

m βp2m ´ 2i`1qe2
i`1n

“ ξ1`2i`1

m βpℓqβp2m ´ 2i`1qek´2i`2i`1n .

The binomial expansion of 2m ´ 2i`1 is

2m´1 ` . . . ` 2i`2 ` 2i`1.

The bounds on ℓ give 0 ă ℓ ă 2i`1, which guarantees that
`

2m´2i`1

ℓ

˘

“ 0 since
ℓ ą 0. So, by (6.1)

βpℓqβp2m ´ 2i`1q “ βpℓ ` 2m ´ 2i`1q.

We get a non-trivial differential as long as the target is non-zero, which is the case
by the induction hypothesis and Lemma 6.18. This proves (1).

We next show that the classes βpℓqek for k ď ℓ and 2i ď k ă 2i`1 are permanent
cycles. Suppose that for 2i ď r ď k,

d1`2rpβpℓqekq “ ξ1`2r
m βpℓ ` 2m ´ 2rqek´r.

The form of the differential comes from Lemma 6.17. Note that

k ´ r ď ℓ ´ r ď ℓ ´ r ` 2m ´ r “ ℓ ` 2m ´ 2r.

This shows that the target is a permanent cycle by the induction hypothesis. We
will now show that this target is actually killed by a shorter differential.

Since

ℓ ` 2m ´ 2r ´ p2m ´ 2i`1q “ 2i`1 ` ℓ ´ 2r ě 2i`1 ` k ´ 2k “ 2i`1 ´ k ą 0.

Therefore, ℓ ` 2m ´ 2r ą 2m ´ 2i`1 and so we can write

ℓ ` 2m ´ 2r “ 2m ´ 2j`1 ` ℓ̄, ℓ̄ ă 2j , 0 ď j ď i

k ´ r “ k̄ ` 2h ´ 2j ` 2h`1n j ď h, k̄ ă 2j , 0 ď n
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Let

ℓ1 “ ℓ ` 2m ´ 2r ´ p2n ´ 2h`1q “ ℓ̄ ` 2h`1 ´ 2j`1

and

κ1 “ k ´ r ´ 2h`1n ` 2h “ k̄ ` 2h`1 ´ 2j .

Then, κ1 ´ 2h ď ℓ1 ă κ1 and 2h ď κ1 ă 2h`1. So by the induction hypothesis,

d1`2h`1pξ2r´2h`1

m βpℓ1qeκ
1
`2h`1nq “ ξ2r´2h`1

m

´

ξ1`2h`1

m βpℓ1 ` 2m ´ 2h`1qeκ
1
´2h`2h`1n

¯

“ ξ1`2r
m βpℓ ` 2m ´ 2rqek´r .

Therefore, the target was killed by a shorter differential. This proves (2).
Finally, (3) holds by the linearity of the differentials with respect to the d2i`2 -

cycle e2
i`1

. □

Finally, the correspondence between the aσ-localized slice spectral sequence of
iG

1

˚ BP ppGqqxm,my and the relative Adams spectral sequence is as follows:

Summary 6.21. The E2-page of the relative Adams spectral sequence of the
geometric fixed points ΦG1

BP ppGqqxm,my is, additively,

E˚,˚
2 – Σ2m´2F2rξms b Epβq b F2re2m`1s

where the shift preserves the filtration and adds 2m ´ 2 to the topological degree.
The correspondence between the slice spectral sequence and the relative Adams

spectral sequence is as follows:

(1) The elements bk for 0 ď k ď 2m´1 ´ 1 correspond to βp2m ´ 2pk ` 1qq.

Note that b2
m´1

´1 corresponds to βp0q “ 1, the multiplicative unit in the
relative Adams spectral sequence of Rxmy.

(2) For ℓ “ 2n´1p2m ´ 1q ` 1, 0 ď k ă 2m´1 and r ě 0, the element

bk`2m´1

in the localized sliced spectral sequence supports the differential

dℓpb
k`2m´1

q “ bkpf̄m ` γf̄mq, forced by the slice differential

dℓpu
2m´1

2σ q “ a2
m`1

´1
σ pvGm ` γvGmq.

These differentials are b2
m

-linear, leaving behind bk where the dyadic ex-
pansion of k “ ε0`ε1 ¨2` . . . satisfies εm´1 “ 0. This family of differentials
identifies fm with γfm in the whole slice spectral sequence.

(3) After the slice differentials above, multiplication by either f̄m or γfm cor-
responds to multiplication by ξm in the relative Adams spectral sequence.

(4) The remaining elements bk are in one-to-one correspondence with the ele-
ments in filtration s “ 0 in the relative Adams spectral sequence, shifted

by a degree 2m ´ 2. In particular, the element b2
m

`2m´1
´1 corresponds to

e2m`1 .

6.4. The C2-slice spectral sequence of BP ppC4qqx2, 2y. As an application, we
illustrate the above correspondence of spectral sequences by computing the C2-
slice spectral sequence of BP ppC4qqx2, 2y.

The C2-slice spectral sequence of BP ppC4qqx2, 2y is determined by the relative
Adams spectral sequence for

Rx2y “ rAx2y{pζ5, . . .q ^A EndApM1q,
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whose computation follows from Section 6.3 above. The essential features were also
completely computed in Section 7.3 of [6]. The E2-page is

F2rξ2s b Epβ-2q b F2re8s.

There are only d3- and d5-differentials. The d3-differentials are generated by

d3pe1`2˚
8 q “ e2˚

8 ξ32β´2,

and the d5-differentials are generated by

d5pe2`4˚
8 q “ e4˚

8 ξ52 ,

d5pe3`4˚
8 β-2q “ e1`4˚

8 ξ52β-2.

The E2-term of the aσ-localized slice spectral sequence for a´1
σ i˚

C2
BP ppC4qqx2, 2y

is

F2ru2σ, a
˘1
σ , t̄2, γt̄2s.

As before, let b “ u2σ{a2σ. The shortest differentials in this spectral sequence are
the d7-differentials, whose effects are to identify t̄2 with γt̄2. The d7-differentials
are generated by

d7pb2`4˚q “ b4˚pt̄2 ` γt̄2qa3σ,

d7pb3`4˚q “ b1`4˚pt̄2 ` γt̄2qa3σ.

After the d7-differentials, we can then import the differentials from the relative
Adams spectral sequence as explained in Summary 6.21. As a result, the Adams
d3-differentials become the slice d19-differentials, generated by

d19pb5`8˚q “ b1`8˚t̄32a
9
σ.

The Adams d5-differentials become the slice d31-differentials, generated by

d31pb9`16˚q “ b1`16˚t̄52a
15
σ ,

d31pb12`16˚q “ b4`16˚t̄52a
15
σ .

Figure 5 shows the aσ-localized slice spectral sequence for a´1
σ i˚

C2
BP ppC4qqx2, 2y.

At E2, the classes ‚ denote families of monomials formed by the classes a3σ t̄2 and
a3σγt̄2u on the various powers of b. At E8, a ‚ depicted as the target of a d7-
differential becomes a copy of Z{2, represented by a class of the form a3˚

σ t̄˚
2 b

k for
k ‰ 2, 3 mod 4. Each ‚ depicted as the source of a d7-differential is completely
gone as the d7-differentials are injective.

As in Theorem 4.6, to obtain the differentials in the C2-slice spectral sequence
of BP ppC4qqx2, 2y, we truncate at the horizontal line of filtration s “ 0 and remove
the region below this line.

7. The C4-localized slice spectral sequence of a´1
λ BP ppC4qqx2, 2y

In this section, we compute the integer-graded C4-localized slice spectral se-
quence of a´1

λ BP ppC4qqx2, 2y, using all the tools that we have developed in the
previous sections. This computation serves to demonstrate the robustness of our
techniques as well as providing insights to higher differentials phenomena when
generalized to higher heights.
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Figure 5. The aσ-localized slice spectral sequence of a´1
σ i˚

C2
BP ppC4qqx2, 2y.

Remark 7.1. Just like the integer-graded spectral sequence, the full ROpC4q-graded
spectral sequence can be computed by the exact same method. We have opted to
only compute the integer-graded slice spectral sequence because it is more conve-
nient to present its diagrams.

Remark 7.2. By the discussion in Section 4, the slice spectral sequence of the
unlocalized spectrum BP ppC4qqx2, 2y is completely determined by the aλ-localized
slice spectral sequence by truncating away the region below the line of filtration
s “ 0.

Remark 7.3. The following facts are good to keep in mind while doing the compu-
tation:

(1) The differentials with source on or above the line of slope 1 in the C4-
localized slice spectral sequence of a´1

λ BP ppC4qqx2, 2y are determined by the

C4-localized slice spectral sequence of a´1
σ BP ppC4qqx2, 2y computed in Ex-

ample 5.15. These are all d13-differentials.



34 AB, MAH, TL, XDS, AND MZ

(2) Many of the differentials dď31 are determined using the C2-slice differentials
computed in Section 6.4 and the Mackey functor structure (i.e. restriction
and transfer).

(3) The C4-localized slice spectral sequence of a´1
λ BP ppC4qqx2, 2y is a module

over the spectral sequence of a´1
λ MU ppC4qq, but very little of that structure

is needed for the computation (see Section 7.3). Multiplication with respect
to two key classes gives rise to periodicity of differentials and a vanishing
line (Theorem 7.20). These phenomena determine all higher differentials
(dą31).

7.1. Organization of the slice associated graded. For the rest of this section,
we let

t̄1 “ v̄C4
1 and t̄2 “ v̄C4

2 .

From Corollary 2.14, the slice associated graded for BP ppC4qqx2, 2y is HZrt̄2, γt̄2s, so
the E2-page of our spectral sequence is obtained by aλ-localization of the homotopy
of this slice associated graded.

We organize the slice cells by powers of

d̄t̄2 :“ NC4

C2
pt̄2q.

Remark 7.4. This mirrors the approach taken by Hill–Hopkins–Ravenel in [26] to
compute the slice spectral sequence of BP ppC4qqx1y “ BP ppC4qqx1, 1y, where they

organized the slice cells by powers of d̄t̄1 :“ NC4

C2
pt̄1q.

The slice cells are organized according to the following matrix:
¨

˚

˚

˚

˝

d̄0t̄2 d̄1t̄2 d̄2t̄2 ¨ ¨ ¨

d̄0t̄2pt̄2, γt̄2q d̄1t̄2pt̄2, γt̄2q d̄2t̄2pt̄2, γt̄2q ¨ ¨ ¨

d̄0t̄2pt̄22, γt̄
2
2q d̄1t̄2pt̄22, γt̄

2
2q d̄2t̄2pt̄22, γt̄

2
2q ¨ ¨ ¨

...
...

...
. . .

˛

‹

‹

‹

‚

(7.1)

To read this, note that i˚
C2

d̄t̄2 “ t̄2γt̄2 so that every monomial in t̄2, γt̄2 appears in
some entry of the matrix.

Entries d̄jt̄2 in the matrix represent slice cells of the form

HZ ^ S3jρ4 ,

where ρ4 is the regular representation of C4. These are the regular (or non-induced)

cells. Entries of the form d̄jt̄2pt̄i2, γt̄
i
2q represent slice cells of the form

HZ ^ pC4` ^C2 S
i˚
C2

p3jρ4`3iρ2q
q » HZ ^ pC4` ^C2 S

p6j`3iqρ2q.

These are the induced cells.
For the non-induced cells, the homotopy groups of HZ ^ S˚ρ4 are computed in

[26] and depicted in Figure 3 of that reference. For the induced cells, we get the
induced Mackey functors

HZ˚pC4` ^ S˚ρ2q –Ò
C4

C2
HZC2

˚ pS˚ρ2q,

(see Definition 2.6 of [26]) whose values are also known. After inverting aλ, we
obtain the E2-page depicted in Figure 6.

We use the same notation as in Table 1 of [26] for the Mackey functors. Blue
Mackey functors are supported on induced cells and represent multiple copies of
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Figure 6. The E2-page of the Mackey functor valued aλ-localized
slice spectral sequence of BP ppC4qqx2, 2y.

the Mackey functor ‚̂ of [26], supported on the various monomials in the matrix
(7.1) that are not in the first row.

We name the classes that do not come from induced cells. First, there are classes
of order four (which have non-trivial restrictions):

‚ d̄2it̄2up6i´jqλu6iσajλ in degree p24i ´ 2j, 2jq for 0 ď i and j ď 6i.

Next, the classes of order two which do not come from induced cells are:

‚ d̄it̄2u2kσa3iλap3i´2kqσ in degree p3i ` 2k, 9i ´ 2kq for 0 ď i and 0 ď 2k ă 3i.
These are above the line of slope one.

‚ d̄it̄2ujλup3i´1qσap3i´jqλaσ in degree p6i ` 2j ´ 1, 6i ´ 2j ` 1q for i odd, 0 ď i
and 0 ď j.

The induced cells are named by treating them as images of the transfer map from
the corresponding classes in the C2-slice spectral sequence.
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7.2. The d7-differentials. The first differentials are the d7-differentials. They
occur between classes supported on slice cells that are in the same column of the
matrix (7.1). The d7-differentials are all proven by restricting to the aσ-localized
slice spectral sequence of a´1

σ i˚
C2

BP ppC4qqx2, 2y. More specifically, the restriction of
certain classes to the C2-spectral sequence support the d7-differentials discussed in
Section 6.4, and therefore by naturality and degree reasons their preimages must
also support d7-differentials in the C4-spectral sequence. By naturality and degree
reasons, these are all the d7-differentials that can occur, after which we obtain the
E8-page.

Let b “
uλ

aλ
. The restriction of this class is the class b “ u2σ

a2σ
in the C2-spectral

sequence. We have d7-differentials

d7
`

b2`4˚
˘

“ trC4

C2
pt̄2a3σ2

qb4˚

d7
`

b3`4˚
˘

“ trC4

C2
pt̄2a3σ2

qb1`4˚.

Figure 7 depicts the E7-page. The ˝ classes are Z{4’s coming from non-induced
cells. The black ‚ classes are Z{2’s coming from the non-induced cells, while the
blue ‚ classes are direct sums of Z{2’s coming from the induced cells.

Figure 8 depicts the E8-page. In that figure, all dots represent a copy of Z{2,
with the exception of the white ˝ classes which represent Z{4’s. The pink denotes
a degree where, on a previous page, there was a Z{4 but the generator supported
a non-zero differential and is no longer present. As before, blue classes come from
induced cells.

7.3. Strategy for computing higher differentials. Before computing the higher
differentials (those of lengths ě 13), we describe our strategy. There are two classes
that will be very important for our computation. They are the classes

α “ d̄8t̄2u24σa24λ at p48, 48q,

b32 “ u32λ{a32λ at p64,´64q.

We will use the following crucial facts about the spectral sequence of a´1
λ MU ppC4qq.

These results are the only significant computational inputs from the localized slice
spectral sequence for a´1

λ MU ppC4qq and the much harder computations of [28].

Proposition 7.5. The class α “ d̄8t̄2u24σa24λ is a permanent cycle in the localized

slice spectral sequence for a´1
λ MU ppC4qq. Consequently, the differentials are linear

with respect to multiplication by α.

Proof. This is a direct consequence of the Slice Differential Theorem of Hill–Hopkins–
Ravenel [22, Theorem 9.9]. More precisely, all the differentials in the region on or
above the line of slope 1 in the C4 localized slice spectral sequence for a´1

λ MU ppC4qq

can be completely computed. □

Proposition 7.6. In the localized slice spectral sequence for a´1
λ MU ppC4qq, we have

the following facts:

(1) The class b8 “ u8λ{a8λ supports a d15-differential.
(2) The class b16 “ u16λ{a16λ supports a d31-differential.
(3) The class b32 “ u32λ{a32λ is a d61-cycle.
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Figure 7. The E7-page of the aλ-localized slice spectral sequence
of a´1

λ BP ppC4qqx2, 2y.

Proof. All the claims are direct consequences of the computations for the C4 slice
spectral sequence of BP ppC4qqx2y (see Table 1 in [28]). We will elaborate on each of
them below.

For (1), the restriction of the class u8λ is u16σ2
, which supports the d31-differential

d31pu16σ2
q “ v̄C2

4 a31σ2

in the C2-spectral sequence of MU ppC4qq. Therefore by naturality of the restriction
map, the class u8λ must support a differential of length at most 31. By a stem-
wise computation, it is impossible for the class u8λ to support a differential of
length ď 13, as there are no possible targets. We will not carry out the details
of this computation here, as [28, Section 7.3] already contains the arguments and
results to show that u8λ supports a d15-differential in the slice spectral sequence of
MU ppC4qq. It follows that the class u8λ

a8λ
must also support a d15-differential in the

aλ-localized slice spectral sequence of a´1
λ MU ppC4qq. This proves (1).
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Figure 8. The E8-page of the aλ-localized slice spectral sequence
of a´1

λ BP ppC4qqx2, 2y.

For (2), the restriction of the class u16λ is u32σ2
, which supports the d63-differential

d63pu32σ2q “ v̄C2
5 a63σ2

in the C2-spectral sequence of MU ppC4qq. Therefore by naturality of the restriction
map, the class u16λ must support a differential of length at most 63. By a stem-wise
computation, it is impossible for the class u16λ to support a differential of length
ď 19, as there are no possible targets. Again, we do not write down the details
here, as the computation in [28] already shows that u16λ supports a d31-differential
in the slice spectral sequence of MU ppC4qq (see the discussion in Section 11.2 and
the chart in Section 13 of [28]). It follows that the class u16λ

a16λ
must also support

a d31-differential in the aλ-localized slice spectral sequence of a´1
λ MU ppC4qq. This

proves (2).
For (3), it is a consequence of the computation of a´1

λ BP ppC4qqx2, 2y that u32λ is

a d61-cycle in the slice spectral sequence of MU ppC4qq (in fact, it can be shown that
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it supports the d63-differential d63pu32λq “ Npv̄5a63σ2
qu16λ, but we will not prove

it here). □

Multiplication by the classes α and b32 give the spectral sequence a large amount
of structure which we will exploit in our computation. We describe this below,
focusing on each class at a time.

7.3.1. Multiplication by α. The class α is extremely important for this computation.
A key consequence of the behavior we describe here is that this allows us to compute
differentials out of order, flipping back and forth between different pages of the
spectral sequence without loosing the thread of its story. We make this precise
now, starting with the following straightforward lemma.

Lemma 7.7. In the C4-localized slice spectral sequence of a´1
λ BP ppC4qqx2, 2y, on the

E13-page, we have:

(1) Multiplication by α is injective.
(2) Let x be a class in bidegree pt ´ s, sq. If

s ´ 48 ě ´pt ´ s ´ 48q and s ´ 48 ď 3pt ´ s ´ 48q

then x is α divisible.

See Figure 9.

The key result is then the following:

Proposition 7.8. Let r ě 13. Suppose that drpxq “ y is a non-trivial differential
on the Er-page of the localized slice spectral sequence of a´1

λ BP ppC4qqx2, 2y. Then y
is α-free in the sense that no multiple αiy is zero at Er. Consequently, x is also
α-free.

Proof. First, note that if y is α-free, the linearity of the differentials with respect
to multiplication by α implies that x must also be α-free.

We prove that y is α-free by induction on r. If r “ 13, the claim follows
immediately from the fact that all classes are α-free at E13 (Lemma 7.7). Suppose
that the claim holds for all r1 ă r, that drpxq “ y is a non-trivial differential and
that y is α-torsion. Then there exists i ą 0, r1 ă r and z such that

dr1 pzq “ αiy.

Choose a minimal such i, so that αi´1y is non-zero at Er. A comparison of degrees
then implies that the bidegree of z satisfies the conditions of Lemma 7.7 (2), so that
z is α-divisible. It cannot be the case that dr1 pz{αq “ αi´1y since this contradicts
the minimality of i. So we must have that dr2 pz{αq “ v ‰ 0 for some r2 ă r1 ă r.
But by the induction hypothesis, v is then α-free which means that dr2 pzq “ αv ‰ 0,
which is also a contradiction. □

Remark 7.9. We will show in Section 7.4.3 that α is killed by a d61-differential.
This will imply that for any permanent cycle x, the class αx must be hit by a
differential of length at most 61.

We now explain the upshot of Proposition 7.8. Given any class y at E13, there
is a unique class x which is not α-divisible (so is in the complement of the region
of Lemma 7.7 (2)) and such that y “ αix for some i ě 0. We say that x generates
an α-free family, where the family is the collection of classes tαix | i ě 0u.
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Now, Proposition 7.8 implies that α-free families come in pairs: one family in the
pair, generated by x say, supports differentials which truncate the second family
in the pair, generated by y say. (In fact, by Remark 7.9, the differentials must be
of the form drpαixq “ αi`1y.) All classes in the α-free family generated by x are
then gone at the Er`1-page, having supported a no-trivial differential. The class y
is now α-torsion, and by Proposition 7.8, it cannot support any further differential.
This allows us to discard y from the rest of the computation, making the spectral
sequence effectively sparser. Furthermore, we may now run differentials out of order
if we find a unique possibility for pairing α-free families, even if this is through very
long differentials.

Remark 7.10. This is in fact a common behavior for spectral sequences. For exam-
ple, what we have here is very similar to the situation explained in a certain elliptic
spectral sequence [5, Section 6], where there the role of α is played by the class κ̄.

7.3.2. Multiplication by b32. Multiplication by the permanent cycle b32 acts as a
periodicity generator for most of the spectral sequence. More precisely, we have:

Lemma 7.11. Let r ě 13. Multiplication by b32 is injective on the Er-page for
classes on or below the line of slope 1 through the origin.

It follows that if a differential has both source and target on or below the line
of slope 1 through the origin, then drpxq “ y occurs if and only if drpb32xq “ b32y
occurs. Differentials whose source and target are above the line of slope 1 through
the origin are determined by the aσ-localized spectral sequence. Some differentials,
fall in neither category in the sense that they cross the line of slope one. That is,
the source is on or below the line of slope one and the target is above. For these
differentials, the target may be b32-torsion while the source is not.

As one does the computation however, one sees that the target of such differen-
tials have bidegree pt ´ s, sq such that

s ď pt ´ sq ` 14.

This can be seen from the d13-differentials that are obtained from the aσ-localized
spectral sequence and the structure of the E14-page. Since the longest differential is
a d61 and classes are concentrated in degrees with t ´ s even, classes strictly below
the line

s “ pt ´ sq ´ 60

cannot support differentials that cross the line of slope 1 through the origin. There-
fore, to completely determine the differentials of the spectral sequence using b32-
linearity and α-linearity, it is sufficient to determine:

‚ The d13’s with source on or above the line of slope 1 through the origin, all
obtained from the aσ-localized spectral sequence.

‚ The differentials on classes with source of bidegree pt´ s, sq where is in the
rectangular region:

s ď pt ´ sq s ě ´pt ´ sq

s ě pt ´ sq ´ 188 s ă ´pt ´ sq ` 96

This region is larger than what is needed in practice, but the goal of this discussion
is simply to illustrate the strategy and make a rough estimate on what differentials
need to be determined. As we go through the computation, we learn that the region
that determines all differentials is in fact smaller but, a priori, this is not clear.
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α-divisible classes

s = 3(t− s)

α-divisible classesα (48, 48)

s− 48 = 3(t− s)− 48

s = t− s

s = (t− s)− 60

s = (t− s)− 188

s = −(t− s)

s = −(t− s) + 96

b32

Figure 9. Features of the aλ-localized slice spectral sequence of a´1
λ BP ppC4qqx2, 2y

7.3.3. Summary. To summarize, we just have to focus on the classes in the shaded
rectangular region of Figure 9 which is the union of a cone and a rectangle. Once
we have figured out the fate of all the classes in this region, we can propagate by
the classes α and b32 to obtain the rest of the differentials. Furthermore, once
an α-multiple of a class gets truncated by a differential, that class can no longer
support differentials and can be disregarded from future arguments.

7.4. Differentials of length at least 13.

7.4.1. d13-differentials. By degree reasons, the next possible differentials are the
d13-differentials.
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The differentials on or above the line of slope 1 are all obtained by computing
the aσ-localized spectral sequence, as explained in Section 5.1. This spectral se-
quence is depicted in Figure 4. The differentials are summarized in the following
proposition.

Proposition 7.12. The d13-differentials that are on or above the line of slope 1
are generated by

(1) d13

´

pd̄2t̄2u6σa6λqi`4k
¯

“ d̄3t̄2u2σa9λa7σ ¨ pd̄2t̄2u6σa6λqi´1`4k

i “ 1, 2, k ě 0.

(2) d13

´

d̄2t̄2u4σa6λa2σ ¨ pd̄2t̄2u6σa6λqi`4k
¯

“ d̄3t̄2a9λa9σ ¨ pd̄2t̄2u6σa6λqi`4k

i “ 0, 3, k ě 0.

(3) d13

´

d̄5t̄2u14σa15λaσ ¨ pd̄2t̄2u6σa6λqi`4k
¯

“ d̄6t̄2u10σa18λa8σ ¨ pd̄2t̄2u6σa6λqi`4k

i “ 0, 1, k ě 0.

To prove the d13-differentials that are under the line of slope 1, we would like to
first point out that the class d̄t̄2uλu2σa2λaσ in bidegree p7, 5q is a permanent-cycle
by degree reasons.

The class d̄4t̄2u12σa12λ in bidegree p24, 24q will also be important. By the Hill–

Hopkins–Ravenel Slice differential theorem [22, Theorem 9.9]. This class supports
the d13-differential

d13pd̄4t̄2u12σa12λq “ d̄5t̄2u8σa15λa7σ

in the slice spectral sequence of BP ppC4qq. By naturality, this differential also appears
in the slice spectral sequence of BP ppC4qqx2, 2y. When applying the Leibniz rule, the
class d̄4t̄2u12σa12λ p24, 24q acts as if it is a d13-cycle for differentials whose sources
are below the line of slope 1. More specifically, the target of the d13-differential
on this class multiplied with the source of another d13-differential below the line of
slope 1 is always 0.

Proposition 7.13. We have the following d13-differentials:

(1) d13
`

b4
˘

“ d̄t̄2uλu2σa2λaσ
(2) d13

`

b5
˘

“ d̄t̄2u2λu2σaλaσ
(3) d13 pd̄t̄2u4λu2σa´λaσq “ 2d̄2t̄2u6σa6λ
(4) d13 pd̄t̄2u4λu2σa´λaσ ¨ bq “ 2d̄2t̄2u6σa6λ ¨ b

(5) d13
`

d̄t̄2u4λu2σa´λaσ ¨ b2
˘

“ 2d̄2t̄2u6σa6λ ¨ b2

(6) d13
`

d̄t̄2u4λu2σa´λaσ ¨ b3
˘

“ 2d̄2t̄2u6σa6λ ¨ b3

Proof. To prove (1), we will first prove the differential

d13
`

b12
˘

“ d̄t̄2u9λu2σa´6λaσ pd13p24,´24q “ p23,´11qq

The source of this differential restricts to a class in the C2-spectral sequence that
supports a d31-differential. By naturality and degree reasons, we must have the d13-
differential claimed above. Applying Leibniz with the class b8 in degree p16,´16q

proves (1).
The source of (2) restricts to a class that supports a d19-differential in the C2-

spectral sequence. Therefore the source class must support either a d13- or a d19-
differential. By naturality, it cannot be a d19-differential because the target does
not restrict to the target of the d19-differential in the C2-spectral sequence.
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The targets of (3) is in the image of the transfer. The preimage is killed by a d19-
differential. Therefore by naturality and degree reasons, we have the d13-differential
claimed in (3).

Differentials (4) and (5) are obtained by applying the Leibniz rule using the class
d̄t̄2uλu2σa2λaσ p7, 5q with differentials (1) and (2) (and also using the gold relation).

It remains to prove differential (6). Consider the class d̄t̄2u7λu2σa´4λ. The
restriction of this class is t̄2γt̄2u14σ2

a´8σ2
, which supports a d7-differential in the C2-

spectral sequence. Therefore, the class d̄t̄2u7λu2σa´4λ also supports a d7-differential
in the C4-spectral sequence. The existence of this d7-differential shows that there
is an exotic restriction of filtration 6 for the class d̄t̄2u7λu2σa´4λaσ p19,´7q. It
must have nonzero restriction, restricting to the class t̄32u10σ2a´σ2 p19,´1q after
the E7-page.

Since the class t̄32u10σ2
a´σ2

p19,´1q supports a d19-differential in the C2-spectral
sequence, the class d̄t̄2u7λu2σa´4λaσ p19,´7q cannot survive past the E25-page. The
only possibility is for it to support the d13-differential claimed by (6). □

The same proof for differentials (1)–(6) can be used to prove six more differentials
that are obtained by multiplying both the source and the target of each differential
by p12, 12q: d̄t̄2u6σa6λ (note that we can’t just directly propagate by this class using

the Leibniz rule because it supports a d5-differential in SliceSSpBP ppC4qqq).

Proposition 7.14. The following classes are d13-cycles:

(1) 2b6 p12,´12q;
(2) 2d̄2t̄2u6λu6σ p24, 0q;

(3) d̄3t̄2u8λu8σaλaσ p33, 3q.

Proof. For (1), the class 2d̄4t̄2u6λu12σa6λ p36, 12q is a d13-cycle by using the class

d̄t̄2uλu2σa2λaσ p7, 5q to apply the Leibniz rule to the d13-differential

d13pd̄3t̄2u6λu8σa3λaσq “ 2d̄4t̄2u2λu12σa10λ pd13p29, 7q “ p28, 20qq.

Therefore, by Leibniz with the class d̄4t̄2u12σa12λ p24, 24q, the class 2b6 p12,´12q is
also a d13-cycle.

(2) is proven by the exact same method, by using the class d̄t̄2uλu2σa2λaσ p7, 5q

to apply the Leibniz rule to the d13-differential

d13pd̄t̄2u6λu2σa´3λaσq “ 2d̄2t̄2u2λu6σa4λ pd13p17,´5q “ p16, 8qq.

For (3), the class d̄t̄2u8λu8σaλaσ is a d13-cycle in SliceSSpBP ppC4qqq. Therefore

by naturality it is a d13-cycle in SliceSSpBP ppC4qqx2, 2yq. □

Now, we can propagate all the differentials by the classes d̄2t̄2u12σa12λ p24, 24q

and b8 p16,´16q. The d13-differentials under the line of slope 1 are summarized in
the following proposition.

Proposition 7.15. The d13-differentials that are under the line of slope 1 are

(1) d13

´

b4`i`8j ¨ pd̄2t̄2u6σa6λqk
¯

“ d̄t̄2uλu2σa2λaσ ¨ bi`8jpd̄2t̄2u6σa6λqk,

0 ď i ď 1, j, k ě 0.

(2) d13

´

d̄t̄2u4λu2σa´λaσ ¨ bi`8jpd̄2t̄2u6σa6λqk
¯

“ 2d̄2t̄2u6σa6λ ¨bi`8jpd̄2t̄2u6σa6λqk,

0 ď i ď 3, j, k ě 0.

They are shown in Figure 10.
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Figure 10. The E13-page of the aλ-localized slice spectral se-
quence of a´1

λ BP ppC4qqx2, 2y.

Remark 7.16. We will see that these are the last non-trivial d13 differentials. How-
ever, at this point in the computation, there are possibilities for other non-trivial
d13 differentials. Later, (in Lemmas 7.21 and 7.24) we will show that these do not
occur.

7.4.2. d19-differentials.

Proposition 7.17. The following d19-differentials exist:

(1) d19
`

2b5
˘

“ trpt̄32a9σ2
q (d19p10,´10q “ p9, 9q)

(2) d19
`

2b6
˘

“ trpt̄32u2σ2
a7σ2

q (d19p12,´12q “ p11, 7q)

(3) d19
`

b9
˘

“ trpt̄32u8σ2aσ2q (d19p18,´18q “ p17, 1q)

(4) d19
`

2b13
˘

“ trpt̄32u16σ2
a´7σ2

q (d19p26,´26q “ p25,´7q)
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Proof. Differential (1) is obtained by applying transfer to the d19-differential

d19

ˆ

u10σ2

a10σ2

˙

“ t̄32a9σ2

in the C2-spectral sequence.
For differentials (2) and (3), the classes t̄32u2σ2

a7σ2
and t̄32u8σ2

aσ2
are killed by

d31-differentials in the C2-spectral sequence. Therefore their images under the
transfer map must also be killed by differentials of lengths at most 31. The only
possibilities are the differentials claimed.

Differential (4) is obtained by applying the transfer to the d19-differential

d19

ˆ

u26σ2

a26σ2

˙

“ t̄32u16σ2a´7σ2

in the C2-spectral sequence. □

The same arguments in the proof above can be used to prove twelve more d19-
differentials, obtained by multiplying the four d19-differentials in Proposition 7.17
by d̄2t̄2u6λa6λ p12, 12q, d̄4t̄2u12λa12λ p24, 24q, and d̄6t̄2u18λa18λ p36, 36q.

Proposition 7.18. The following d19-differentials exist:

(1) d19p2b14q “ trpt̄32u18σ2
a´9σ2

q pd19p28,´28q “ p27,´9qq

(2) d19

´

2b14 ¨ pd̄2t̄2u6σa6λq

¯

“ trpt̄72u18σ2
a3σ2

q pd19p40,´16q “ p39, 3qq

(3) d19

´

2b14 ¨ pd̄2t̄2u6σa6λq2
¯

“ trpt̄112 u18σ2
a15σ2

q pd19p52,´4q “ p51, 15qq

(4) d19

´

2b14 ¨ pd̄2t̄2u6σa6λq3
¯

“ trpt̄152 u18σ2
a27σ2

q pd19p64, 8q “ p63, 27qq

Proof. We will prove differential (1) first. Consider the class trpt̄192 u18σ2
a39σ2

q

p75, 39q. This class must die on or before the E61-page. There are three possi-
ble ways for this class to die. It can support a d31-differential hitting the class
d̄12t̄2 uλu36σa35λ p74, 70q; it can be the target of a d19-differential from the class

2d̄8t̄2u14λu24σa10λ p76, 20q; or it can be the target of a d43-differential from the class

2d̄6t̄2u20λu18σa´2λ p76,´4q.
It is impossible for this class to support a d31-differential because it is the transfer

of a class that supports a d31-differential in the C2-slice spectral sequence, and the
target does not transfer to the class d̄12t̄2 uλu36σa35λ p74, 70q.

The d43-differential also cannot happen because the class 2d̄6t̄2u20λu18σa´2λ p76,´4q

is the transfer of t̄122 u40σ2
a´4σ2

, which is the target of a d31-differential in the C2-
spectral sequence. Therefore it must be killed by a differential of length at most
31.

It follows that the d19-differential

d19p2d̄8t̄2u14λu24σa10λq “ trpt̄192 u18σ2
a39σ2

q pd19p76, 20q “ p75, 39qq

exists. Applying Leibniz with respect to the class d̄4t̄2u24σa24λ p48, 48q proves (1).

Differentials (2), (3), (4) are proven by the exact same method. □

Now, we can propagate the d19-differentials that we have proven by the classes
b16 p32,´32q and d̄4t̄2u24σa24λ p48, 48q to obtain the rest of the d19-differentials.

Proposition 7.19. The d19-differentials are
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Figure 11. The E19-page of the aλ-localized slice spectral se-
quence of a´1

λ BP ppC4qqx2, 2y.

(1) d19

´

2bi`8j ¨ pd̄2t̄2u6σa6λqk
¯

“ trpt̄32a9σ2
q ¨ bi´5`8jpd̄2t̄2u6σa6λqk

i “ 5, 6, j, k ě 0

(2) d19

´

b9`16i ¨ pd̄2t̄2u6σa6λqk
¯

“ trpt̄32u8σ2
aσ2

q ¨ b16ipd̄2t̄2u6σa6λqk

i, k ě 0.

They are shown in Figure 11.

7.4.3. The vanishing theorem.

Theorem 7.20 (Vanishing Theorem). In the aλ-localized slice spectral sequence
for a´1

λ BP ppC4qqx2, 2y, we have the d61-differential

d61pd̄3t̄2u16λu8σa´7λaσq “ d̄8t̄2u24σa24λ pd61p49,´13q “ p48, 48qq.

Furthermore, any class of the form pd̄8t̄2u24σa24λq ¨ x must die on or before the
E61-page.
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Proof. In the aλ-localized slice spectral sequence of a´1
λ BP ppC4qq, the classNpv̄4qu16σa31λ

must die on or before the E61-page because it is the target of the predicted d61-
differential

d61 pu16λaσq “ Npv̄4qu16σa31λ,

obtained by norming up the d31-differential d31pu16σ2
q “ v̄4a31σ2

in the C2-spectral
sequence. Therefore, if we multiply the target by d̄11t̄2 u32σa32λ, the class d̄

11
t̄2
Npv̄4qu48σu48λ

p96, 96q must die on or before the E61-page.
Under the map

a´1
λ SliceSSpBP ppC4qqq ÝÑ a´1

λ SliceSSpBP ppC4qqx2, 2yq,

the class d̄11t̄2 Npv̄4qu48σu48λ is sent to d̄16t̄2 u48σu48λ p96, 96q. By naturality and degree
reasons, the only possibility that this class can die on or before the E61-page is for
it to be killed by a d61-differential. This implies that the original class must also be
killed by a d61-differential in the aλ-localized slice spectral sequence of a´1

λ BP ppC4qq.
Furthermore, by the module structure, any class in the aλ-localized slice spectral
sequence of a´1

λ BP ppC4qqx2, 2y of the form pd̄16t̄2 u48σu48λq ¨ x must die on or before
the E61-page.

The class d̄8t̄2u24σa24λ p48, 48q is also the target of a d61-differential because after

multiplying it by d̄16t̄2 u48σa48λ p96, 96q, it must die on or before the E61-page. By
degree reasons, the only possibility is for it to be killed by a d61-differential. Since
multiplication by d̄16t̄2 u48σa48λ p96, 96q induces an injection on the E2-page, and all

the classes above the line of slope p´1q with this class as the origin are all divisible
by it, the claimed d61-differential must occur.

Similarly, for any class of the form pd̄8t̄2u24σa24λq ¨ x, we can multiply it by

d̄16t̄2 u48σa48λ p96, 96q to deduce that the product must die on or before the E61-page.
It follows from the same reasoning as the previous paragraph that the original class
must also die on or before the E61-page. □

7.4.4. d31-differentials. To prove the d31-differentials, we will first prove the nonex-
istence of certain d13-differentials.

Lemma 7.21. At the E13-page, we have

(1) d13pd̄t̄2u8λu2σa´5λaσq ‰ 2d̄2t̄2u4λu6σa2λ pd13p21,´9q ‰ p20, 4qq.

(2) d13pd̄3t̄2u8λu8σaλaσq ‰ 2d̄4t̄2u4λu12σa8λ pd13p33, 3q ‰ p32, 16qq.

Proof. Suppose (1) exists. By applying the Leibniz rule with respect to the classes
d̄4t̄2u12σa12λ p24, 24q and b8 p16,´16q, the d13-differential

d13pd̄5t̄2u16λu14σa´λaσq “ 2d̄6t̄2u12λu18σa6λ pd13p61,´1q “ p60, 12qq

must also exist. Consider the class d̄9t̄2u3λu26σa24λaσ in p59, 49q. By Theorem 7.20,

this class must die on or before the E61-page. However, with the class 2d̄6t̄2u12λu18σa6λ
p60, 12q gone, there are no classes that could kill it or be killed by this class on or
before the E61-page. Contradiction.

Now, suppose (2) exists. By applying the Leibniz rule with respect to the classes
d̄4t̄2u12σa12λ p24, 24q and b8 p16,´16q, the d13-differential

d13pd̄7t̄2u16λu20σa5λaσq “ 2d̄8t̄2u12λu24σa12λ pd13p73, 11q “ p72, 24qq

must also exist. Consider the class d̄11t̄2 u3λu32σa30λaσ p71, 61q. By Theorem 7.20,
this class must die on or before the E61-page. Just like the previous case, there is no
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class that could kill it or be killed by it on or before the E61-page. Contradiction.
□

Proposition 7.22. We have the following d31-differentials:

(1) d31
`

trpt̄112 u10σ2
a23σ2

q
˘

“ d̄8t̄2u18σa24λa6σ;

(2) d31

´

trpt̄112 u10σ2a23σ2q ¨ pd̄2t̄2u6σa6λq

¯

“ d̄8t̄2u18σa24λa6σ ¨ pd̄2t̄2u6σa6λq;

(3) d31

´

trpt̄112 u24σ2
a9σ2

q ¨ pd̄2t̄2u6σa6λqi
¯

“ 2d̄8t̄2u4λu24σa20λ ¨ pd̄2t̄2u6σa6λqi,

0 ď i ď 3;

(4) d31

´

trpt̄112 u24σ2
a9σ2

q ¨ b16pd̄2t̄2u6σa6λqi
¯

“ 2d̄8t̄2u4λu24σa20λ¨b16pd̄2t̄2u6σa6λqi,

0 ď i ď 3.

Proof. To prove (1), first multiply the predicted target, d̄8t̄2u18σa24λa6σ p42, 54q, by

d̄16t̄2 u48σa48λ p96, 96q. By Theorem 7.20 and degree reasons, the product must be

killed by a differential of length 61. It follows that (1) must hold.
By Theorem 7.20 and degree reasons, the target of (2) must be killed by a

differential of length at most 61. The only possible differential is the ones claimed.
To prove (3), note that in the aσ2

-localized slice spectral sequence of i˚
C2

BP ppC4qqx2, 2y,
we have the differential

d31pt̄112 u24σ2a9σ2q “ t̄162 u8σ2a40σ2 pd31p57, 9q “ p56, 40qq.

Applying transfer to the target shows that the image of the target under the transfer
map must be killed on or before the E31-page. There are only two possibilities.
Either the claimed d31-differential exists, or it is killed by a d13-differential from
d̄7t̄2u8λu20σa13λaσ p57, 27q. By Lemma 7.21, the d13-differential does not exist.
Therefore the claimed d31-differential happens for i “ 0. The rest of the differentials
in (3) and all the differentials in (4) are proven by the same method. □

We can propagate the differentials in Proposition 7.22 with respect to the classes
d̄8t̄2u24σa24λ p48, 48q and b32 p64,´64q to obtain the rest of the d31-differentials.

Proposition 7.23. The d31-differentials are

(1) d31

´

trpt̄112 u10σ2
a23σ2

q ¨ pd̄2t̄2u6σa6λqi`4j
¯

“ d̄8t̄2u18σa24λa6σ¨pd̄2t̄2u6σa6λqi`4j,

i “ 0, 1, j ě 0;

(2) d31

´

trpt̄32u24σ2
a´15σ2

q ¨ b16ipd̄2t̄2u6σa6λqj
¯

“ 2d̄4t̄2u4λu12σa8λ¨b16ipd̄2t̄2u6σa6λqj,

i, j ě 0.

They are shown in Figure 12.

7.4.5. d37-differentials. To prove the d37-differentials, we will first prove the nonex-
istence of certain d13-differentials.

Lemma 7.24. At the E13-page, we have

(1) d13

´

d̄12t̄2 uλu36σa35λ

¯

‰ d̄13t̄2 u34σa39λa5σ;

(2) d13

´

d̄12t̄2 uλu36σa35λ ¨ pd̄2t̄2u6σa6λq

¯

‰ d̄13t̄2 u34σa39λa5σ ¨ pd̄2t̄2u6σa6λq;

(3) d13

´

d̄11t̄2 u3λu32σa30λaσ

¯

‰ d̄12t̄2 u34σa36λa2σ;

(4) d13

´

d̄11t̄2 u3λu32σa30λaσ ¨ pd̄2t̄2u6σa6λq

¯

‰ d̄12t̄2 u34σa36λa2σ ¨ pd̄2t̄2u6σa6λq;
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Figure 12. The E31-page of the aλ-localized slice spectral se-
quence of a´1

λ BP ppC4qqx2, 2y.

(5) d13

´

d̄9t̄2u19λu26σa8λaσ ¨ pd̄2t̄2u6σa6λqi
¯

‰ 2d̄10t̄2 u15λu30σa15λ ¨ pd̄2t̄2u6σa6λqi,

0 ď i ď 3.

Proof. To prove (1), note that if the class d̄12t̄2 uλu36σa35λ p74, 70q supports a d13-

differential, then applying the Leibniz rule with respect to the class d̄4t̄2u12σa12λ
p24, 24q would show that the class d̄8t̄2uλu24σa23λ p50, 46q must support a differential
of length at most 13. This is a contradiction because there are no possible targets.
The nonexistence of differentials (2), (3), and (4) can be proven by the same method.
The differentials in (5) follows from (1)-(4) by applying the Leibniz rule with respect
to d̄4t̄2u12σa12λ p24, 24q and b16 p32,´32q. □

Proposition 7.25. We have the following d37-differentials for i “ 0, 1:

d37pd̄5t̄2u27λu14σa´12λaσ ¨ pd̄2t̄2u6σa6λqiq “ d̄8t̄2u17λu24σa7λ ¨ pd̄2t̄2u6σa6λqi.

Proof. To prove the differential when i “ 0, we will show that the d37-differential

d37pd̄13t̄2 u27λu38σa12λaσq “ d̄16t̄2 u17λu48σa31λ pd37p131, 25q “ p130, 62qq
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exists. Propagating with respect to the class d̄8t̄2u24σa24λ p48, 48q would then prove

the desired differential. Note that by Theorem 7.20, the class d̄16t̄2 u17λu48σa31λ
p130, 62q must die on or before the E61-page. There are two possibilities: either it
supports a d37-differential hitting d̄19t̄2 u8λu56σa49λaσ p129, 99q, or the claimed differ-
ential exists. Suppose the first case happens, then we claim there is no possibility
for the class d̄13t̄2 u27λu38σa12λaσ p131, 25q to die on or before the E61-page. This
is because if the class does die, then the only possibility is for it to support a
d13-differential hitting 2d̄14t̄2 u23λu42σa19λ p130, 38q. However, if this d13-differential

exists, then by applying the Leibniz rule with respect to the class d̄4t̄2u12σa12λ
p24, 24q, the class d̄9t̄2u27λu26σaσ p107, 1q must also support a differential of length
at most 13. This is a contradiction because we must have the d37-differential

d37pd̄9t̄2u27λu26σaσq “ d̄12t̄2 u17λu36σa19λ pd37p107, 1q “ p106, 38qq

by the Vanishing Theorem and degree reasons (Theorem 7.20). It follows that the
class d̄9t̄2u27λu26σaσ p107, 1q supports a d37-differential.

The second differential, when i “ 1, is proven by the same method. □

Proposition 7.26. The d37-differentials are

(1) d37

´

d̄4t̄2u8λu12σa4λ ¨ pd̄2t̄2u6σa6λqi`4j
¯

“ d̄7t̄2u18σa21λa3σ ¨ pd̄2t̄2u6σa6λqi`4j,

i “ 0, 1, j ě 0;

(2) d37

´

d̄t̄2u8λu2σa´5λaσ ¨ pd̄2t̄2u6σa6λqi`4j
¯

“ d̄4t̄2u8σa12λa4σ ¨ pd̄2t̄2u6σa6λqi`4j,

i “ 0, 3, j ě 0;

(3) d37

´

2d̄2t̄2u7λu6σa´λ ¨ pd̄2t̄2u6σa6λqi`4j
¯

“ d̄5t̄2u10σa15λa5σ ¨ pd̄2t̄2u6σa6λqi`4j,

i “ 0, 1, j ě 0;

(4) d37

´

2b12`16i ¨ pd̄2t̄2u6σa6λqj
¯

“ d̄3t̄2u3λu8σa6λaσ ¨ b16ipd̄2t̄2u6σa6λqj,

i, j ě 0;

(5) d37

´

d̄t̄2u11λu2σa´8λaσ ¨ b16ipd̄2t̄2u6σa6λqj
¯

“ d̄4t̄2uλu12σa11λ¨b16ipd̄2t̄2u6σa6λqj,

i, j ě 0.

They are shown in Figure 13.

Proof. All the differentials can be proven immediately from the Vanishing Theo-
rem and degree reasons (Theorem 7.20 and Lemma 7.24), Proposition 7.25, and
propagation with respect to the classes d̄8t̄2u24σa24λ p48, 48q and b32 p64,´64q. □

7.4.6. d43-differentials.

Proposition 7.27. The following d43-differentials exist for i “ 0, 1:

d43pd̄12t̄2 u40λu36σa´4λ ¨ pd̄2t̄2u6σa6λqiq “ trpt̄312 u58σ2a35σ2q ¨ pd̄2t̄2u6σa6λqi.

Proof. When i “ 0, note that by the Vanishing Theorem (Theorem 7.20), the class
trpt̄312 u58σ2

a35σ2
q p151, 35q must die on or before the E61-page. There are two pos-

sibilities. Either the claimed differential occurs, or it supports a d55-differential
hitting 2d̄20t̄2 u15λu60σa45λ p150, 90q. The second case does not occur because the

class 2d̄20t̄2 u15λu60σa45λ p150, 90q needs to support a d61-differential killing the class

d̄25t̄2 u74σa75λaσ p149, 151q, or else no class would be able to kill d̄25t̄2 u74σa75λaσ
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Figure 13. The E37-page of the aλ-localized slice spectral se-
quence of a´1

λ BP ppC4qqx2, 2y.

p149, 151q on or before the E61-page and we would reach a contradiction with The-
orem 7.20.

The second differential is proven by the same method. □

Proposition 7.28. The d43-differentials are

(1) d43

´

b16`32i ¨ pd̄2t̄2u6σa6λqj`4k
¯

“ trpt̄72u10σ2a11σ2q ¨ b32ipd̄2t̄2u6σa6λqj`4k,

i, k ě 0, j “ 0, 3;

(2) d43

´

b24`32i ¨ pd̄2t̄2u6σa6λqj`4kpd̄2t̄2u8λu6σa´2λqℓ
¯

“ trpt̄72u26σ2
a´5σ2

q ¨ b32ipd̄2t̄2u6σa6λqj`4kpd̄2t̄2u8λu6σa´2λqℓ,
i, k ě 0, j “ 0, 1, ℓ “ 0, 1, 2.

They are shown in Figure 14.
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Proof. All the differentials can be proven immediately from the Vanishing Theorem
and degree reasons (Theorem 7.20), Proposition 7.27, and propagation with respect
to the classes d̄8t̄2u24σa24λ p48, 48q and b32 p64,´64q. □
7.4.7. d55-differentials.

Proposition 7.29. The d55-differentials are

(1) d55

´

trpt̄32u26σ2a´17σ2q ¨ b32ipd̄2t̄2u6σa6λqj`4k
¯

“ d̄6t̄2u16σa18λa2σ¨b32ipd̄2t̄2u6σa6λqj`4k,

i, k ě 0, j “ 0, 3;

(2) d55

´

trpt̄32u26σ2
a´17σ2

q ¨ b8`32ipd̄2t̄2u6σa6λqj`4kpd̄2t̄2u8λu6σa´2λqℓ
¯

“ d̄6t̄2u16σa18λa2σ ¨ b8`32ipd̄2t̄2u6σa6λqj`4kpd̄2t̄2u8λu6σa´2λqℓ,
i, k ě 0, j “ 0, 1, ℓ “ 0, 1, 2.

They are shown in Figure 14.

Proof. All the differentials can be deduced from the Vanishing Theorem and degree
reasons (Theorem 7.20), and propagation with respect to the classes d̄8t̄2u24σa24λ
p48, 48q and b32 p64,´64q. □
7.4.8. d61-differentials.

Proposition 7.30. We have the following d61-differentials:

(1) d61

´

d̄t̄2u16λu2σa´13λaσ ¨ pd̄2t̄2u8λu6σa´2λqipd̄2t̄2u6σa6λqj`4kb32ℓ
¯

“ d̄6t̄2u18σa18λ ¨ pd̄2t̄2u8λu6σa´2λqipd̄2t̄2u6σa6λqj`4kb32ℓ,

pi, jq “ p0, 0q, p0, 1q, p1, 0q, p1, 1q, p2, 0q, p2, 1q, p3,´3q, p3, 0q, k, ℓ ě 0;

(2) d61

´

2d̄4t̄2u15λu12σa´3λ ¨ pd̄2t̄2u8λu6σa´2λqipd̄2t̄2u6σa6λqj`4kb32ℓ
¯

“ d̄9t̄2u26σa27λaσ ¨ pd̄2t̄2u8λu6σa´2λqipd̄2t̄2u6σa6λqj`4kb32ℓ,

pi, jq “ p0, 0q, p0, 1q, p1,´3q, p1, 0q, p2,´4q, p2,´3q, p3,´4q, p3,´3q, k, ℓ ě 0.

They are shown in Figure 14.

Proof. All the differentials can be deduced from the Vanishing Theorem and degree
reasons (Theorem 7.20), and propagation with respect to the classes d̄8t̄2u24σa24λ
p48, 48q and b32 p64,´64q. □
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Figure 14. The d43 (blue), d55 (magenta), and d61-differentials
(black) in the aλ-localized slice spectral sequence of
a´1
λ BP ppC4qqx2, 2y.
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Figure 15. The E8-page of the aλ-localized slice spectral se-
quence of a´1

λ BP ppC4qqx2, 2y.
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