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Abstract

We define a plus-construction on connective augmented algebras

over operads in symmetric spectra using Quillen homology. For asso-

ciative and commutative algebras, we show that this plus-construction

is related to both Bousfield localization and Carlsson’s derived com-

pletion.

1 Introduction

Quillen’s classical plus-construction takes a pointed space X, with perfect
normal subgroup P of π1(X), and produces a homology isomorphism X →
X+ that induces the quotient map π1(X) → π1(X)/P on fundamental
groups. The construction is typically introduced by attaching 2-cells and
3-cells via basic obstruction theory. The original interest in this construction
is Quillen’s theorem relating it to homotopy group completion: when applied
to the classifying space of the infinite general linear group of a ring R, the
result is a space whose homotopy groups are the higher algebraic K-groups
of R.

This construction was later rephrased by Pirashvili [17] in the form of a plus-
construction G → G+ for a simplicial group with a perfect normal subgroup
of π0. In this form, he generalized the construction to Lie algebras. Livernet
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[13] later generalized the construction to algebras over a rational operad of
chain complexes.

In this paper we define a plus-construction in stable homotopy theory. The
approach is based on Quillen homology, generalizing topological André-Quillen
homology in the commutative case and a structure related to topological
Hochschild homology in the associative case.

Theorem 1. Let O be a connective operad in symmetric spectra, and A
a connective O-algebra with an augmentation A → O(0). Suppose J is a
perfect π0(O)-submodule of ker(πn(A) → πn(O(0))). Then there exists an
n-connected map A → A+ of augmented O-algebras inducing the quotient
πn(A) → πn(A)/J such that the induced map on Quillen homology is an
equivalence.

In Section 2 we recall the definition of the (derived) Quillen homology object.
In Section 3 we indicate how this can be computed as a simplicial object,
and obtain the relevant obstruction theory in Section 4 to define a plus-
construction.

The constructions of this paper are carried out in a “based”, or augmented,
context. An unbased version would require a more delicate investigation of
the homotopy of coproducts in O-algebras and universal enveloping operads.

This is related to notions of Bousfield localization and completion. In Sec-
tions 6 and 7 we show that in the case where the augmentation ideal of an
algebra A is perfect, the map A → A+ can also be identified as a Bousfield
localization, and both notions are equivalent to the derived completion of
Carlsson [3].

1.1 Examples

We now indicate some examples in the case of associative and commutative
algebras.

Example 2. The plus construction projects off summands. If S and T are
R-algebras and we have an augmentation factoring as S×T → S → R, then
the plus construction corresponding to the perfect (i.e. idempotent) ideal
0 × π0(T ) ⊂ π0(S × T ) is equivalent to S.
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This version, in some sense, provides the geometric description of the plus
construction for well-behaved rings: a map of pointed objects inducing an
isomorphism on cotangent complexes at the basepoint locally models the
inclusion of a component.

Several examples of the plus construction are connected to known construc-
tions on spaces or groups. The functor R∧(−) takes smash products of
spaces to smash products of R-modules, so given a topological or simplicial
group G we can form the group ring spectrum

R[G] = R∧G+.

This is an associative augmented R-algebra, and the Quillen homology is the
desuspension of the fiber of the map

B(R, R[G], R) ≃ R ∧
R[G]

R → R.

However, this fiber is naturally equivalent to the reduced homology object
R∧ BG. In particular, the Quillen homology groups of R[G] are shifts of the
reduced R-homology groups of BG.

Suppose π0G has a normal subgroup P such that π0R ⊗ Pab = 0. Then the
image of P is zero in the zero’th Quillen homology group H1(G, π0R), and
R[G] has a plus-construction annihilating elements of the form (g − 1) for
g ∈ P .

Example 3. If the group P is itself perfect, then the resulting associative ring
spectrum can be taken to be R[Ω(BG+)] for some strictly associative model
of the loop space, such as the Moore loop space.

Example 4. Suppose K ⊂ GLn(Zp) is a finite prime-to-p group acting on the
abelian group (Z/(p∞))n. We can form the semidirect product

G = (Z/(p∞))n
⋊ K.

If p is nilpotent in π0R, then R[G] has trivial zero’th Quillen homology, and
so there is a plus construction. A model for R[G]+ is given by the group ring
R[Ω(BG∧

p )] of the associated p-compact group [6].

Example 5. Let G be a connected Lie group and Gδ the underlying discrete
group. If n = 0 in π0R for some n > 0, then R[Gδ] has trivial zero’th Quillen
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homology. There is an associated map R[Gδ] → R[G], and this map being a
plus-construction for any such R is equivalent to a conjecture of Milnor on
the relationship between the homology of G and Gδ [15].

If the Lie algebra of G is semisimple, then the group ring R[Gδ] always has
trivial zero’th Quillen homology, and so we can form a plus-construction in
general. Suppose π0R is Z. The second homology group of Gδ, which becomes
isomorphic to the first homotopy group of R[Gδ]+, has as a quotient a positive
eigenspace within the algebraic K-group K2(C) [18].

Example 6. Previous work [12] exhibits examples of derived completions in
the case of representation rings of nilpotent groups, where a smaller ring of
characters gives rise to a perfect ideal in the mod-p representation ring.

Notation and conventions. Throughout this paper we fix a base symmetric
ring spectrum R, connective and commutative, that forms the ground ring
for all smash products. Except where explicitly referred to, we consider all
constructions as happening in the derived sense.

2 Operads and Quillen homology

We begin by recalling work of Harper on operads in symmetric spectra [10],
and give a short review of Quillen homology. Let S denote the category of
symmetric spectra, and SΣ the category of symmetric sequences in symmetric
spectra, with composition product ◦.

Definition 7 ([10, 3.3]). An operad O in symmetric spectra is a symmetric
sequence {O(n)} ∈ SΣ with the structure of a monoid under the composition
product.

Theorem 8 ([10, 1.3, 1.4]). Suppose O is an operad in symmetric spectra
and let AlgO be the category of O-algebras.

• AlgO has a natural model category structure where the forgetful functor
to symmetric spectra (with the positive stable model structure) creates
fibrations and weak equivalences.
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• If f : O → O′ is a map of operads, then there is a Quillen adjoint pair

AlgO

f∗

⇄
f∗

AlgO′

with f ∗ the restriction functor.

• If such a map f is an objectwise stable equivalence, then the adjunction
is a Quillen equivalence.

Let O be an operad in R-modules. We begin by defining the following se-
quence of operads constructed from O.

Definition 9. The nonunital O-algebra operad O+ ⊂ O has O+(k) = O(k)
for all k > 0 and O+(0) = ∗.

Definition 10. The O-module operad MO(1) ⊂ O has MO(1) = O(1) and
MO(k) = ∗ if k 6= 1.

The symmetric spectrum O(1) is an associative R-algebra, and an algebra
over MO is precisely a module over O(1).

Remark 11. If Com is the commutative operad with Com(k) = R, the cor-
responding notions are of nonunital commutative algebras and R-modules.
We drop the operad from the notation and simply write M for the category
of R-modules.

The operad maps MO → O+ → O induce “forgetful” functors U and adjoint
“free,” or pushforward, functors. We write P+(M) and P(M) for the free
nonunital O-algebra and free O-algebra on an O(1)-module M .

If O is an operad, the category of augmented O-algebras is the “over” cat-
egory of O-algebras X equipped with a map ǫ : X → O(0) of O-algebras.
The augmentation ideal I(X) is the fiber of this augmentation.

The functor P naturally takes values in augmented O-algebras with I as a
right adjoint. As fibrations of O-algebras are determined on the underlying
objects, there is a well-defined right-derived functor RI from augmented O-
algebras to nonunital O-algebras. This is a Quillen equivalence.
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There is a projection map π : O+ → MO. We define Q to be the “indecom-
posables” functor π∗, and E+ the functor π∗ inducing the trivial action of
O(k) for k > 1.

The square-zero, or Eilenberg-Maclane, object associated to an O(1)-module
M is the augmented O-algebra

E(M) = O(0) ∨ E+(M).

Definition 12. The Quillen homology object of an augmented O-algebra X
is

QH(X) = LQ ◦ RI(X).

This is an invariant of the homotopy type of the operad O. We have an
adjunction that descends to an adjunction on homotopy categories:

[X, E(M)]
O/O(0)

∼= [QH(X), M ]
O(1)

Definition 13. The wreath product algebra Wr(k,O) associated to O is the
twisted group ring

O(1)∧ k ∧(Σk)+,

where the multiplication map is given by

(x∧σ)∧(y∧ τ) 7→ (xσ(y))∧(στ).

The spectra O(k) are O(1)–Wr(k,O)-bimodules. We note that there is a
straightforward formula for the free O+-algebra.

Lemma 14. For an O(1)-module X, the free object on X is the O+-algebra

P
+X =

∨

k>0

O(k) ∧
Wr(k,O)

X∧ k.

If O(k) is a cofibrant O(1)–Wr(k,O)-bimodule and X is cofibrant, then these
smash products are derived smash products, and hence

LP
+X ≃

∨

k>0

O(k)
L
∧

Wr(k,O)
X∧L k.
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Proof. The formula for the free O-algebra is standard: it has the requisite
universal property.

In order to show that the smash product is cofibrant, we note that

O(k) ∧
Wr(k,O)

X∧ k =

[

O(k) ∧
O(1)∧ k

X∧ k

]

/Σk.

The cofibrancy of X in the positive stable model structure ensures that X∧ k

has a free Σk-action.

We relegate a proof of the following technical detail to Section 8.

Lemma 15. There exists an equivalence of operads P → O+ such that P(k)
is a cofibrant P(1)–Wr(k,P)-bimodule for all k > 1.

3 Bar constructions

In this section, we outline methods for computing obstruction groups for
algebras over operads. The basic theorems required for these are based on
the results of Harper [9], but also follow partially from results of Basterra [2]
in the commutative case and Dugger-Shipley [5] in the associative case.

Let A be a cofibrant augmented O-algebra, with I(A) the associated augmen-
tation ideal, and recall that O+ ⊂ O is the nonunital suboperad acting on
I(A). We may by Lemma 15 replace O+ with an operad P that is levelwise
a cofibrant bimodule.

Theorem 16. The derived Quillen homology object of A is equivalent to the
geometric realization of the two-sided bar construction

B(id, P+
P
, I(A)).

Proof. Harper shows in [9, 4.10] that it suffices to show that the simplicial
bar construction B(P+

P
, P+

P
, I(A)) is a levelwise cofibrant P-module. However,

this follows from Lemma 14.
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The free O+-algebra on a cofibrant object is the left derived free O+-algebra.
Hence, computing the homotopy spectral sequence of this simplicial spectrum
gives us the following.

Corollary 17. There exists a spectral sequence with E1-term

Ep,q
1 = πp((LP

+)(q)I(A)) ⇒ πp+qQH(A),

with differentials induced by the monad structure of the left derived functor
LP+.

Remark 18. The Quillen homology object, or linearization of an object, is
the first layer in the Goodwillie tower for the forgetful functor from aug-
mented O-algebras to R-modules (the zero’th layer being O(0)), and lin-
ear functors are roughly right O(1)-modules. The category of symmetric
k-multilinear functors is then equivalent to the category of right Wr(k,O)-
modules, and the higher layers in the Goodwillie tower identified with the
spectra O(k). One can check this by evaluating the higher derivatives on free
objects P(O(1)∧ Sn). (The author should remark that this is well-known to
the experts, but does not know a reference in the literature.)

4 The Hurewicz theorem

We now move on to calculations. From this point forward, by convention all
objects are implicitly replaced by cofibrant or fibrant models so that appro-
priate derived functors are computed. In addition, we follow the convention
that the homotopy groups of a symmetric spectrum X are not defined as a
colimit of homotopy groups of the individual spaces, but as the group [Sn, X]
of maps in the homotopy category (or the classical homotopy groups of an
appropriate Ω-spectrum replacement).

We apply the spectral sequence of Section 3 to obtain exact sequences of
obstructions. Given a connective augmented O-algebra A, let

PNA ≃ O(0) ∨ I(A)[0 . . .N ]

be the N ’th Postnikov section of A as an augmented O-algebra. It has a
unique O-algebra structure (up to homotopy) making the map A → PNA a
map of augmented O-algebras.
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We write O for the operad π0(O+) and T for the O-algebra π0(I(A)).

We note that the O+-algebra structure on I(A) makes the groups πN+1I(A)
into modules over this algebra in the sense that there are maps

O(k + 1) ⊗ T⊗k ⊗ πN+1I(A) → πN+1I(A)

that satisfy associativity and commutativity with respect to the operad com-
position.

Definition 19. For any module M over T , the decomposable submodule
DM is the T -submodule which is the image of the map

⊕

k>0

O(k + 1) ⊗ T⊗k ⊗ M → M.

Proposition 20. Suppose A → B is a map with first nonvanishing relative
homotopy group πN (B, A) = J for some N ≥ 1. Then the first nonvanishing
relative homotopy group of the map QH(A) → QH(B) is

πN (QH(B), QH(A)) = J/DJ.

Proof. This follows by considering the map of bar complexes

B(id, P+, I(A)) → B(id, P+, I(B))

inducing a map of Quillen homology spectral sequences. Taking homotopy
fibers levelwise gives a bar construction whose realization is a homotopy fiber
of the map QH(A) → QH(B).

A straightforward analysis of this levelwise fiber implies that πN of the fiber
of P+I(A) → P+I(B) accepts a surjective map from

X =
⊕

k>0

O(k + 1) ⊗π0Wr(k)⊗O(1) T⊗k ⊗ J.

(This map is an isomorphism if N > 0. If N = 0, this factors through the
tensor product over π0Wr(k + 1).)

Therefore, the terms Ep,q
1 of the homotopy spectral sequence for the fiber of

Quillen homology are zero unless p ≥ 0, q ≥ N , and take the following form.
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? ? ?
J X/K ?
0 0 0
...

The d1-differential X/K → J is induced by the operad action and has image
precisely consisting of the decomposable elements, proving the desired exact
sequence exists.

Corollary 21. The natural map

πiQH(A) → πiQH(PNA)

is an isomorphism for i < N , and there exists a natural exact sequence

πNI(A)/DπNI(A) → πNQH(A) → πNQH(PNA) → 0.

Remark 22. For N > 0, the term in the spectral sequence in position EN,1
2 =

EN,1
∞ is a module of indecomposable relations, i.e. operations on J that map

to zero modulo those relations that can be deduced from operad composition.

We obtain a version of Whitehead’s theorem.

Proposition 23. If π0I(A) = 0 and A → B is a 0-connected map that is an
equivalence on Quillen homology, then it is a weak equivalence.

Proof. Applying Proposition 20, the first nonvanishing homotopy group J of
the fiber of A → B would coincide with the submodule DJ of decomposables.
Since π0I(A) = π0I(B) = 0, the decomposable submodule DJ is zero.

5 The plus-construction

In this section, we obtain a plus construction via the obstruction theory of
Section 4.

Definition 24. Suppose that O is an operad in π0R-modules, T an O-
algebra, and M a T -module. The module M is perfect if it coincides with
the submodule DM of decomposable elements, i.e. the action map

⊕

k>0

O(k + 1) ⊗ T⊗k ⊗ M → M
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is surjective.

Theorem 25. Suppose J ⊂ πNI(A) is a perfect T -submodule. Then there
exists an N-connected map A → A+ of augmented algebras inducing an
isomorphism on Quillen homology and inducing the map πNA → πNA/J
on homotopy.

Proof. We follow a proof along the same lines as the ordinary plus construc-
tion.

Pick a set of T -module generators {eα} for J , and let

X = ∨αΣNO(1) → I(A)

be the O(1)-module map that takes the unit of each summand to the cor-
responding generator in J . We attach 1-cells as O-algebras by forming the
O-algebra homotopy pushout

PX //

��

A

��

O(0) // A′.

We have πNA′ = πNA/J . On Quillen homology, there is a homotopy pushout
of O(1)-modules

X //

��

QH(A)

��

∗ // QH(A′).

By Proposition 20, the map A → A′ is N -connected, πNQH(PNA) →
πNQH(PNA′) is an isomorphism, and so since X is free there is a splitting

QH(A′) ≃ QH(A) ∨ ΣX

of O(1)-modules.

Applying Corollary 21 to the maps A → PNA and A′ → PNA′, we obtain
the following diagram of exact sequences.
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πN+1I(A) //

��

πN+1QH(A) //

��

πN+1QH(PNA) //

��

0

πN+1I(A′) // πN+1QH(A′) //

��

πN+1QH(PNA′) //

��

0

πN(X)

��

// 0

0

By a standard diagram chase, we find that there is a map ΣX → I(A′) of
O(1)-modules such that the composite

ΣX → I(A′) → QH(A′) → ΣX

is an equivalence.

We then attach 2-cells by forming the O-algebra homotopy pushout

P(ΣX) //

��

A′

��

O(0) // A+.

The map A′ → A+ is (N + 1)-connected, and on Quillen homology there is
a homotopy pushout of O(1)-modules

ΣX //

��

QH(A′)

��

∗ // QH(A+).

Therefore the map A → A+ is N -connected and πNA+ = πNA/J . The
map ΣX → QH(A′) ≃ QH(A) ∨ ΣX reduces to the identity on ΣX, and
so the composite map QH(A) → QH(A′) → QH(A+) is an equivalence as
desired.

Corollary 26. If π0I(A) is perfect, then any two plus-constructions A+
1 , A+

2

killing π0I(A) are weakly equivalent under A.
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Proof. Form the O-algebra homotopy pushout

A //

��

A+
1

��

A+
2

// A+
3 .

On Quillen homology, all the maps in this diagram are equivalences. The
objects A+

i are all 0-connected, having π0I(A+
i ) = 0 by definition. Therefore,

by Proposition 23 both maps to A+
3 are equivalences.

6 Bousfield localization

We now specialize the constructions of Section 5 to the case where the operad
O is either the commutative operad or the associative operad. In particular,
O(0) = R.

Assume A is a connective augmented O-algebra with π0I(A) satisfying I2 =
I, so that in particular the zero’th Quillen homology group vanishes. Let E
be a cofibrant replacement of R viewed as an A-algebra via the augmentation;
our goal is to examine the E-localization functor.

Lemma 27. The natural map E ∧A E → E ∧A+ E is a weak equivalence.

Proof. We carry this proof out in the associative and commutative cases
separately.

If the operad O is the commutative operad, we note that there is a homotopy
pushout diagram of augmented O-algebras

A //

��

E

��

E // E ∧A E,

and so the Quillen homology object of E ∧A E is the suspension of the
Quillen homology object of E (and similarly for A+). Therefore, the map
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E ∧A E → E ∧A+ E is an equivalence on Quillen homology between objects
whose augmentation ideals have vanishing π0, and hence by Proposition 23
it is a weak equivalence.

If the operad O is instead the associative operad, the Quillen homology object
of A is the fiber of the multiplication map

E ∧
A

E → E.

(This is a “standard” relationship between topological Hochschild homology
and Quillen homology for associative algebras.) Therefore, the equivalence
on Quillen homology implies that map

E ∧
A

E → E ∧
A+

E

is a weak equivalence.

We have a Bousfield localization functor

X 7→ LEX

on the homotopy category of A-modules. A map X → Y is an E-equivalence
(and induces an equivalence on localizations) if and only if E ∧A X → E ∧A Y
is a weak equivalence, and an object Z is E-local if the functor [−, Z]A takes
E-equivalences to isomorphisms.

Theorem 28. There is a natural equivalence

LEA ≃ A+

from the Bousfield localization of A to the plus construction.

Proof. We first show that A+ is E-local. We express the object A+ as the
homotopy limit of its Postnikov stages A+[0 . . . N ], which are naturally A+-
modules. We have A+[0] ≃ Hπ0E, and for any N we have homotopy fiber
sequences of A+-modules

ΣNHπNA+ → A+[0 . . . N ] → A+[0 . . .N − 1].

14



The object HπNA+, as an Eilenberg-Maclane spectrum and an A+-module,
naturally inherits the structure of a module over Hπ0A

+ = Hπ0E. Therefore,
it can be given the structure of an E-module, and so the standard adjunction

[X, HπNA+]A ∼= [E ∧
A

X, HπNA+]E

shows that HπNA+ is E-local.

Local objects are closed under taking homotopy fibers and homotopy limits,
and hence A+ ≃ holim A+[0 . . .N ] is E-local.

We now show that the map A → A+ is an E-equivalence, or equivalently
that the map E → E ∧A A+ is a weak equivalence.

By Lemma 27, we find that the map

(E ∧
A

A+) ∧
A+

E → (E ∧
A+

A+) ∧
A+

E

is a weak equivalence.

Let F be the fiber of the map E ∧A A+ → E ∧A+ A+ of connective right
A+-modules. Then F ∧A+ E is contractible. However, the map π0A

+ → π0E
is an isomorphism, and so the Künneth spectral sequence

Torπ∗A+

∗∗ (π∗F, π∗E) ⇒ π∗(F ∧
A+

E) = 0

implies that F is contractible. Hence the map A → A+ is an E-equivalence
as desired.

Remark 29. Minasian has given a spectral sequence computing topological
Hochschild homology from topological André-Quillen homology [16, Corol-
lary 2.7]. This shows directly that a map of commutative symmetric ring
spectra inducing an equivalence on topological André-Quillen homology in-
duces one on topological Hochschild homology.

Remark 30. The results of the theorem should hold true in categories of al-
gebras over the little n-cubes operad. The Quillen homology functor on aug-
mented En-algebras should factor through Quillen homology for A∞-algebras.
However, the author is not aware of a sufficient reference in the literature for
“iterating the bar construction” to rigorously justify this argument.
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7 Derived completion

Carlsson [3] defines a notion of “derived completion” of A with respect to E
(the E-nilpotent completion of Bousfield) as the totalization of a cosimplicial
object

T ·
A(A; E)p =

{

E∧A(p+1) = E ∧
A

E ∧
A
· · · ∧

A
E
}

.

Here the coface maps are induced by the unit A → E and the codegeneracy
maps are induced by the multiplication E ∧A E → E. This is isomorphic to
the totalization of the standard cobar construction associated to the “Hopf
algebroid” (E, E ∧A E) in spectra. The spectral sequence for the homotopy of
the totalization is a generalized Adams-Novikov spectral sequence abutting to
πt−sA based on E-homology. When π∗(E ∧A E) is flat over E∗, this spectral
sequence has an identifiable E2-term

Exts,t
(π∗E,π∗(E ∧A E))(π∗E, π∗E)

as in [1]. (In the particular case where A is the group ring R[G] of a topologi-
cal group G, the derived completion spectral sequence is the Eilenberg-Moore
spectral sequence abutting to the R-homology of ΩBG.)

We continue the assumptions of the previous section: O is either the com-
mutative or associative operad over R, and A is a connective O-algebra with
the augmentation ideal I = π0I(A) satisfying I = I2. Again, let E be a
cofibrant replacement of R regarded as an A-algebra.

By Lemma 27, the map E ∧A E → E ∧A+ E is a weak equivalence, and hence
induces an isomorphism of Adams-Novikov spectral sequences. However, the
map A+ → E is 1-connected by construction. The augmentation E ∧A E →
E is then 2-connected, and so the Adams-Novikov spectral sequence has a
vanishing line because the homotopy groups in the reduced cobar complex
Es,t

1 vanish for (t− 2s) < 0. Hence this spectral sequence converges strongly.
This implies that A+ is E-local as in Theorem 28 and that the E-Bousfield
localization and E-nilpotent completion of A+ coincide [1, Theorem 2.4].

As a result, the natural diagram of algebras and their derived completions
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A //

��

A+

∼

��

A∧
E

∼
// (A+)∧E

shows that A+ and the derived completion A∧
E are weakly equivalent.

8 Cofibrant replacement of operads

In this section we sketch a proof of Lemma 15.

The category of positively graded symmetric sequences in R-modules ad-
mits a levelwise model structure where the forgetful functors Y 7→ Y (n) to
R[Σn]-modules (in the positive stable model structure) create cofibrations,
fibrations, and weak equivalences. This is a (non-symmetric) monoidal closed
category under the composition product ◦:

(A ◦ B)(n) =
∨

P

kjk=n

(

A(Σjk)∧
∧

k

B(k)∧ jk

)

∧
R[

Q

Σjk
≀Σk]

R[Σn]

Cofibrant objects are levelwise cofibrant R-modules, and the composition
product preserves the property of being a relative cell inclusion in each vari-
able. We would like to call this a monoidal model category, but this conflicts
with the definition of [20] that requires the underlying category be symmetric
monoidal.

We claim that a general algebra P in this model category can be replaced by
a new algebra P ′ → P such that P ′(k) is a cofibrant P ′(1) − Wr(k,P ′(1))-
bimodule for k > 1.

Let P ′(1) be a cofibrant replacement of P(1) as an associative algebra, and let
N be P ′(1) concentrated in degree 1. The construction of Shipley-Schwede
[20, Lemma 6.2] allows one to factor the map N → P through an operad
P ′ constructed via a possibly transfinite sequence of pushouts in SpΣ of the
form
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N ◦ X ◦ N

��

// N ◦ Y ◦ N

��

Pα
// Pα+1,

for X → Y a cofibration of R-modules and Pα an N -bimodule. The resulting
object P ′ would then be levelwise cofibrant, proving Lemma 15.
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