
Unwinding the relative Tate diagonal

Tyler Lawson∗

June 27, 2019

Abstract

We show that a spectral sequence developed by Lipshitz and Treumann, for
application to Heegaard–Floer theory, converges to a localized form of topological
Hochschild homology with coe�cients. This allows us to show that the target of
their spectral sequence can be identi�ed with Hochschild homology precisely when
the topological Hochschild homology is torsion-free as a module over THH∗ (F2),
parallel to results of Mathew on degeneration of the Hodge-to-de Rham spectral
sequence.

To carry this out, we apply work of Nikolaus and Scholze to develop a general
Tate diagonal for Hochschild-like diagrams of spectra that respect a decomposition
into tensor products. This allows us to discuss the extent to which there is a Tate
diagonal relative to a base ring.

1 Introduction

Hochschild homology and cyclic covers
The primary goal of this paper is to understand a particular formality condition on
Hochschild homology. Motivated by Heegaard–Floer homology of double covers,
Lipshitz and Treumann developed a noncommutative version of the Hodge-to-de
Rham spectral sequence with coe�cients in [LT]. Given a homologically smooth
and proper di�erential graded algebra over F2 and a bounded di�erential graded
A-bimodule M , they give a spectral sequence with E1-term

E1
∗ = HH∗ (A;M ⊗LA M ).

The E2-term is Tate cohomology for an action of the cyclic group C2 [LT, Theorem
4]—this spectral sequence arises from the Tate construction for C2 acting on the
Hochschild complex HH (A;M ⊗LA M ). When M = A, the d1-di�erential is trivial and
the d2-di�erential is the b-operator of Connes, and this spectral sequence is related
to the Hodge to de Rham spectral sequence [Kal08]. Under an assumption called
π -formality, they show that their spectral sequence converges to HH∗ (A;M ). Without
π -formality, the target of their spectral sequence is not easy to identify, and some
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of the steps in their identi�cation make use of non-additive maps x 7→ x ⊗ x on the
homology level that do not lift to the chain level.

The main goal of this paper is to identify the target of Lipshitz–Treumann’s spectral
sequence with a periodic variant of Bökstedt’s topological Hochschild homology with
coe�cients [Bök]. To begin stating our results, we recall the following result of Bhatt–
Morrow–Scholze [BMS18] on topological Hochschild homology of perfect rings—for
Fp this is due to Bökstedt [Bök], and for perfect �elds, such as �nite �elds, this result
was previously known by work of Hesselholt and Madsen [HM97]. If k is a perfect
ring of characteristic p, the topological Hochschild homology THH∗ (k ) is a polynomial
algebrak[u] on a generator in degree 2. Moreover, the Tate cohomology ring Ĥ−∗ (Cp ;k )
is an algebra over THH∗ (k ) whose underlying module is

k[u±1] · {1,v}.

Here 1, v , and u−1 are generators of H i (Cp ;k ) for i = 0, 1, and 2 respectively.

Theorem 1.1. Suppose that k is a perfect ring of characteristic p, A is a (k-�at) homo-
logically smooth di�erential graded k-algebra, and M is a (k-�at) bounded A-bimodule.
Then there is a Tate cohomology spectral sequence with E2-term

Ĥ ∗ (Cp ;HHk
∗ (A,M ⊗

L
A · · · ⊗

L
A M︸             ︷︷             ︸

p

)) ⇒ Ĥ ∗ (Cp ;k ) ⊗k[u] THH∗ (A;M ).

Note that both sides of this spectral sequence are periodic: degree d is isomorphic
to degree (d + 1) for all d . By combining this with base-change results for topological
Hochschild homology, we will arrive at the following result.

Theorem 1.2. The spectral sequence of Theorem 1.1 reduces to an ungraded spectral
sequence of the form

Ĥ s (Cp ;HHk
s (A,M ⊗

L
A · · · ⊗

L
A M︸             ︷︷             ︸

p

)) ⇒ HHk
∗ (A;M )

precisely when THH∗ (A;M ) is torsion-free as a module over THH∗ (k ) = k[u].

In particular, we can reinterpret Lipshitz–Treumann’s development of π -formality
as giving conditions under which topological Hochschild homology is torsion-free.

Algebra and homotopy theory
The connection between algebra and stable homotopy theory, and in particular topo-
logical Hochschild homology, arises through the following translation procedure.

• For a commutative ring k , there is an Eilenberg–Mac Lane spectrum Hk which
has the structure of a commutative algebra.

• The category of di�erential graded k-modules is equivalent (in a derived sense)
to the category of Hk-modules: this translation takes a complexV to a spectrum
HV such that H∗ (V ) � π∗HV .1

1This is a high-powered version of the Dold–Kan equivalence between chain complexes and simplicial
abelian groups.
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• This equivalence is symmetric monoidal, in the sense of [Lur17], and it takes
the (derived) tensor over Hk to the tensor over k .

• This equivalence preserves homotopy limits, homotopy colimits, and Tate con-
structions.

In particular, under this correspondence a di�erential graded k-algebra A lifts
to an Hk-algebra HA, a k-linear di�erential graded A-bimodule lifts to an Hk-linear
HA-bimodule, and the relative Hochschild complex HHk (A;M ) lifts to topological
Hochschild homology THHHk (HA;HM ). Moreover, there is a base-change formula

THHHk (HA;HM ) ' Hk ⊗THH(Hk ) THH(HA;HM ),

and together these equivalences relate ordinary Hochschild homology and a base-
change of THH [MM03, §5]. A sketched discussion of the translation procedure will
occupy §2.2

The connection to equivariant stable theory was observed by Kaledin [Kal08], and
our methods are very similar to those of Mathew [Mat17]: however, where Mathew
makes use of the circle action on THH(A), we make use of actions of cyclic groups on
THH with certain coe�cients. In these terms, Theorem 1.1 is a consequence of the
following.

Theorem 1.3. Suppose that k is a commutative ring spectrum, A is a k-algebra, andM
is a k-linear A-bimodule. Then there exists an action of Cp on the topological Hochschild
homology THH(A;M ⊗A · · · ⊗A M ) and a natural relative THH-diagonal

ktCp ⊗THH(k ) THH(A,M ) →
[
THHk (A,M ⊗A M ⊗A · · · ⊗A M )

] tCp
.

If A is a smooth k-algebra and the underlying k-module ofM is perfect, this map is an
equivalence.

Once the relative THH-diagonal is set up, the proof in §13 that this is an equivalence
is relatively formal.

The relative Tate diagonal
The results of this paper rely on a piece of nonalgebraic structure: the Tate diagonal,
which plays a prominent role in equivariant stable homotopy theory. For a spectrum
X , the Tate diagonal is a natural map

∆ : X → (X ⊗p )tCp

that enjoys a great of structure. The Tate diagonal is lax symmetric monoidal, it
is natural, and it is impervious to the action of the cyclic group Cp on X ⊗p . These
properties are concisely encoded by Nikolaus–Scholze’s expression of functoriality on
a category of �nite free Cp -sets [NS17, III.3.8].

2This paper is vulnerable to a concern recently raised by [KKS19]: namely, the results in this paper rely
heavily on machinery from [Lur09, Lur17], and it is very di�cult for those outside the �eld to access it. We
have done our best, but are aware that our e�orts may prove inadequate.
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The lax symmetric monoidality of the Tate diagonal allows us to construct a relative
version, using the tensor product over a commutative ring spectrum k rather than over
the sphere. For individual modules, the relative Tate diagonal behaves very similarly
to the ordinary one. However, the functoriality of the relative diagonal is less strong:
the lax symmetric monoidal compatibility does not play well with the cyclic group
invariance. We would like to extend Nikolaus–Scholze’s functoriality for the Tate
diagonal in a way that exhibits the extent to which there can be a relative version.

The starting point is the observation that the cyclic bar construction Z (A) that
builds the Hochschild complex is not just a simplicial spectrum ∆op → Sp: there is a
decomposition of each simplicial degree into a formal smash product of factors, and
the structure maps respect this decomposition. This lifts it to a simplicial object in the
symmetric monoidal envelope Env(Sp), which we will discuss in §3.

Associated to a diagram X : K → Env(C) in a symmetric monoidal envelope, there
is an underlying diagram of �nite sets K → Fin representing the decomposition into
tensor factors: we will de�ne the shape |X | to be the homotopy colimit, a simplicial
set. The shape of THH(A) or THH(A;M ) is the circle S1. Given a diagram X : K →
Env(C) in a symmetric monoidal envelope with shape |X | and a principal Cp -bundle
classi�ed by a map f : |X | → BCp , we will associate a new diagram unwinding X : a
Cp -equivariant diagramψ f X : K → Env(C). For any i ∈ K ,ψ f (i ) is isomorphic to the
iterated formal tensor X (i )⊗p , but the maps in K go to maps between tensor powers
that make use of the structure of the principal bundle.

Let k ⊗Z denote the Loday construction [Sch11] (sometimes called the factorization
homology [Fra13]) of Z with coe�cients in k , often also denoted by LZ (k ),

∫
Z k , or

Z ⊗ k .

Proposition 1.4. Let k be a commutative ring spectrum and K a sifted index category.
For a diagramX : K → Env(LModk ) in the symmetric monoidal envelope and a principal
Cp -bundle f : |X | → BCp over the shape of X , there is a natural map

ktCp ⊗
k⊗|X |

*.
,
hocolim

i ∈K

Sp⊗
X (i )+/

-
→

*.
,
hocolim

i ∈K

LModk⊗
ψ f X (i )+/

-

tCp

called the relative Tate diagonal.

There is asymmetry between the tensor products in the source and target of the rel-
ative Tate diagonal—the source tensor takes place in spectra and the target tensor takes
place in k-modules. We have traced several of our own misunderstandings, including
an assertion that there are cyclotomic structures on relative THH and monoidality
properties of a Tate diagonal on relative THH with coe�cients, back to this root. The
relative Tate diagonal does not imply that there is a k-module Tate diagonal

hocolim
i ∈K

LModk⊗
X (i ) → *.

,
hocolim

i ∈K

LModk⊗
ψ f X (i ))+/

-

tCp

unless the map k ⊗ |X | → ktCp factors through the augmentation k ⊗ |X | → k . This only
holds in a few circumstances, such as when we can �x a trivialization of the bundle
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classi�ed by f .3 This is true, for example, when the index category K is a singleton,
which allows one to construct a natural Tate diagonal M → (M ⊗k · · · ⊗k M )tCp and a
k-module version of the Hill–Hopkins–Ravenel norm [HHR16].
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2 Homological algebra and stable homotopy theory

Background
Sets (and topological spaces) have a natural diagonal map ∆ : X → (Xp )Cp . For an
abelian group, we can compose with the universal multilinear map to get a natural
transformationA→ (A⊗p )Cp , given by a 7→ a⊗· · ·⊗a. This is a natural transformation
of sets, but not a homomorphism: however, this problem vanishes modulo the image
of the transfer homomorphism

(A⊗p )Cp → (A⊗p )Cp ,

and hence determines a natural homomorphism from A to the Tate cohomology group
Ĥ 0 (Cp ;A⊗p ). This map is the (algebraic) Tate-valued Frobenius.

To get a chain-level or derived variant of this Frobenius, we must replace the Tate
cohomology functor Ĥ by a derived Tate construction; but now that we are no longer
taking a quotient by transfers, this no longer strictly imposes the homomorphism
property. As a result, in the construction of a derived version of the Tate-valued
Frobenius we will lose the property of staying within algebra.

Before we introduce the Tate diagonal, we would like to translate the objects under
consideration in [LT] to stable homotopy theory. In this section we will give some
brief background on this translation process. The author claims no originality for the
results in this chapter.

2.1 Module spectra and chain complexes
For any ordinary ring k , let Ch(k ) be the category of chain complexes of k . For such
chain complexes C and D, one can build a function space Mapk (C,D): start with a set
of vertices given by chain maps C → D, attach paths associated to chain homotopies,
and so on. More concisely, using the Dold–Kan correspondence one can take the
function complex Homk (C,D) and associate a simplicial set of maps C → D. Because

3Thomas Nikolaus has pointed out to us that such a factorization through the augmentation is also
possible when k is the spherical group algebra of a discrete abelian group.
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Ch(k ) now has function spaces, one can speak of homotopy limits and colimits in
the category of chain complexes, for example via an associated∞-category which is
made explicit in [Lur17, §1.3.1]. One can also form a localization Ch(k ) → D (k ) by
inverting the quasi-isomorphisms; on the level of homotopy categories, this becomes
the map from the classical chain homotopy category of k to the derived category.

Our starting point is the following theorem, which interprets the category of chain
complexes as equivalent to a construction in stable homotopy theory.

Theorem 2.1 ([Lur17, 7.1.1.16, 7.1.2.13]). Let k be a ring. Then there exists an equiva-
lence of∞-categories

θ : D (k )
∼
−→ LModHk

between the derived ∞-category of di�erential graded k-modules and the category of
modules over the Eilenberg–Mac Lane spectrum Hk .

If k is commutative, this extends to an equivalence of symmetric monoidal ∞-
categories, where the source carries the derived tensor product ⊗Lk and the target carries
the relative smash product ⊗Hk .

This result, in several strengths and several guises, has a long history in the
literature and served as a motivation for many developments. It is present as an analogy
in [Tho85, 5.32]; as an equivalence between the derived category of di�erential graded
k-modules and the homotopy category of Hk-modules in [EKMM97, IV.2.4]; as an
equivalence of model categories in [SS03, 5.1.6]; and an extension of this to a monoidal
equivalence in [Shi07]. The above formulation is convenient because it allows us to
apply the extensive machinery built in [Lur17].

In the description above, the equivalence θ of∞-categories preserves all structure
that can be expressed in a homotopy-invariant fashion.

Corollary 2.2. Suppose that K is a simplicial set. Then composition with θ induces an
equivalence of functor∞-categories

Fun(K ,D (k )) → Fun(K , LModHk ).

Example 2.3. If K = BG is the classifying space of a �nite group, maps BG → C of
∞-categories are coherent actions of G on an object of the∞-category C. This shows
that θ preserves coherent G-actions: chain complexes of k-modules with a coherent
G-action are equivalent to Hk-modules with a coherent G-action. Chain complexes
with strict G-action give rise to Hk-modules with coherent G-action under θ .

Corollary 2.4. The functor θ preserves homotopy limit and colimit diagrams.

Example 2.5. Given a chain complex C of k[G]-modules, the tensor product

W ⊗G C

with a projective resolutionW of Z over Z[G] is a representative for the homotopy
colimit ChG in D (k ). Therefore, it is taken by θ to a homotopy colimit. Similarly, the
function complex HomG (W ,C ) is a representative for the homotopy limit.
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Example 2.6. Let f : ∆op → Ch(k ) represent a simplicial object in chain complexes of
k-modules. Associated to this there is a double complex using the standard alternating
sign boundary operators, and an associated totalization. This total complex is a
representative for the homotopy colimit of the diagram f . As a result, θ takes this
total complex to the homotopy colimit of the diagram θ ◦ f .

Corollary 2.7. If k is commutative and O is an∞-operad, θ induces an equivalence

AlgO (D (k ))
∼
−→ AlgO (LModHk )

of∞-categories of O-algebras.

Example 2.8. SupposeO is an ordinary operad which is acted on freely by the symmetric
groups. Then associated to O there is an∞-operad such that objects with an action
of O are equivalent to algebras over the associated ∞-operad. Since algebras over
∞-operads are invariant under equivalences, this allows us to translate A∞ and E∞
algebras between Ch(k ) and LModHk . For example, an associative di�erential graded
k-algebra A gives rise to an A∞-algebra θA in LModHk . Similarly, di�erential graded
modules and bimodules give rise to modules and bimodules over θA.

2.2 Tate constructions
The classical Tate cohomology of a groupG with coe�cients in a module was exported
to the category of spectra by Greenlees and May [GM95] using equivariant stable
homotopy theory, and generalized to the case of a stable∞-category in [Lur17, 6.1.6.24].
In this section, we will recall some of the important properties satis�ed by the Tate
construction.

Proposition 2.9. LetG be a �nite group, C a stable∞-category which admits countable
homotopy limits and homotopy colimits, andM a G-equivariant object of C. Then there
is a natural transfer map4

Tr : MhG → MhG

from the derived orbit object to the derived �xed-point object. If M is the free object
⊕д∈GM '

∏
д∈G M , this is equivalent to the natural composite

*.
,

⊕
д∈G

M+/
-hG

∼
−→ M

∼
−→

*.
,

∏
д∈G

M+/
-

hG

.

De�nition 2.10. LetG be a �nite group, C a stable∞-category which admits countable
limits and colimits, and M a G-equivariant object of C. We write MtG for the co�ber
of the transfer MhG → MhG , and refer to it as the G-Tate construction onM or simply
the Tate construction.

Proposition 2.11. The Tate construction has the following properties.

• It determines a functor CBG → C from objects of C with G-action to C.
4Other authors refer to this as the norm map, which we prefer to reserve for multiplicative variants.
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• It preserves �nite coproducts, �nite products, homotopy pushouts, and homotopy
pullbacks.

• Any functor C → D between stable∞-categories that preserves countable homo-
topy limits and colimits also preserves Tate constructions. In particular, this is true
of equivalences.

A chain complex M of k[G]-modules determines an object in Ch(k ) with G-action,
and as such we can compare the Tate construction MtG with more classical construc-
tions.

Let E be a projective resolution of Z by �nitely generated free Z[G]-modules, and
E∨ the dual complex Hom(E,Z). (For instance, we may take E to be the standard bar
resolution.) Then there is a composite

E → H0 (E) = Z = H0 (E
∨) → E∨,

where we view Z as a complex concentrated in degree zero, and we can construct a
mapping cone W . This complex W is an unbounded complex of �nitely generated
free Z[G]-modules. Associated to any chain complex M with G-action, there is then a
double complexW ⊗G M with three realizations.

De�nition 2.12. Let M be a chain complex with G-action. We de�ne the following
chain-level Tate constructions as complexes:

Tate⊕ (M )n =
⊕
p+q=n

Wp ⊗G Mq

TateΠ (M )n =
∏

p+q=n

Wp ⊗G Mq

Tate(M )n =
⋃
N

∏
p+q=n,p≤N

Wp ⊗G Mq

The boundary maps in these complexes are the standard boundary maps determined
by the Leibniz rule ∂(a ⊗ b) = ∂a ⊗ b + (−1) |a |a ⊗ ∂b.

Proposition 2.13. The chain-level Tate constructions for the action of G onM have the
following properties.

1. All three Tate constructions preserve short exact sequences inM .

2. There are natural maps Tate⊕ (M ) → Tate(M ) → TateΠ (M ).

3. The map Tate⊕ (M ) → Tate(M ) is an isomorphism ifM is bounded above.

4. The map Tate(M ) → TateΠ (M ) is an isomorphism ifM is bounded below.

5. There is a conditionally convergent Tate cohomology spectral sequence

Ĥ s (G;Ht (M )) ⇒ Ht−s (Tate(M )).5

5Cohomologically minded readers might prefer the indexing Ĥp (G ;Hq (M )) ⇒ Hp+q (Tate(M )).
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6. There is a natural short exact sequence

0→ MhG → MhG → Tate(M ) → 0

of complexes, where the �rst complex is the complex of derived coinvariants and
the second is the complex of derived invariants.

7. The object Tate(M ) is a representative for the homotopical Tate constructionMtG .
In particular, an equivariant quasi-isomorphismM → N induces an equivalence
Tate(M ) → Tate(N ).

In particular, for bounded complexes there is no distinction between these three
constructions. However, these three Tate constructions typically have quite di�erent
behavior for unbounded complexes.

2.3 Algebras and Hochschild complexes
The equivalence of symmetric monoidal∞-categories between the category D (k ) and
the category LModHk allows us to transport Hochschild complexes because they can
be expressed diagrammatically. Given an associative di�erential graded k algebra A
with k-linear bimodule M , the cyclic bar construction is a simplicial chain complex

Zk (A,M ) : ∆op → Ch(k )

whose associated total complex is the Hochschild complex. If all the tensor products
in this complex are equivalent to the derived tensor products, then the functor θ
from Theorem 2.1 preserves them, and takes this simplicial diagram to the cyclic bar
construction

ZHk (θA,θM ) : ∆op → LModHk .

As in Example 2.6, θ takes the associated total complex to the homotopy colimit. The
homotopy colimit geometric realization of this cyclic bar construction, which is the
de�nition of topological Hochschild homology. As a result, we have an identi�cation:

θ (HHk (A;M )) ' THHHk (θA,θM ).

We would now like to develop the interaction with the cyclic group.
Fix a projective resolution W of A as an A-bimodule with only �nitely many

generators. Since any two resolutions are equivalent, there is a quasi-isomorphism

B (A,A,A) →W

of A-bimodules, where the source is the (total complex associated to the) two-sided
bar resolution. This becomes a C2-equivariant equivalence

[M ⊗A B (A,A,A) ⊗A M] ⊗A⊗kAop B (A,A,A) → [M ⊗AW ⊗A M] ⊗A⊗kAop W ,

where C2 acts by rotational symmetry on the tensor products. The left-hand side is a
bisimplicial object; its homotopy colimit realizes the Hochschild complexHHk (A;M⊗LA
M ). Therefore, we have an equivalence of Tate constructions

Tate(HHk (A;M ⊗LA M )) ' Tate
(
[M ⊗AW ⊗A M] ⊗A⊗kAop W

)
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because Tate preserves quasi-isomorphisms. Moreover, if M is bounded and A is
homologically smooth, we can choose W to be �nitely generated; this makes the
right-hand complex bounded, and so both become quasi-isomorphic to the direct-sum
Tate complex

Tate⊕
(
[M ⊗AW ⊗A M] ⊗A⊗kAop W

)
.

This last is the complex whose Tate spectral sequence was developed by Lipshitz and
Treumann in [LT].

We now apply θ . We �nd that Lipshitz and Treumann’s construction is carried to
a model in stable homotopy theory: the a Tate construction

[
THHHk (θA;θM ⊗θA θM )

] tC2
.

This translation now allows us to apply results in stable homotopy theory to understand
Lipshitz and Treumann’s Tate spectral sequence.

3 Envelopes
We recall that a multicategory (or colored operad) is a category where morphisms
may have several inputs: maps are of the form {Xs }s ∈S → Y with S a �nite index set.
Every symmetric monoidal category D has an underlying multicategory UD: we
de�ne maps {Xs }s ∈S → Y to be the same as maps

⊗
Xs → Y . In the other direction,

associated to a multicategory C there is a symmetric monoidal category Env(C) called
the symmetric monoidal envelope.

• The objects of Env(C) are formal tuples (S, {Xs }s ∈S ) of a �nite set and an S-
indexed set of objects of C, representing a formal tensor

⊗
Xs .

• The morphisms (S, {Xs }) → (T , {Yt }) in Env(C) are pairs of a map f : S → T
and a collection of maps дt : {Xs }s ∈p−1 (t ) → Yt in the multicategory C.

By construction, there is an equivalence between multifunctors C → UD and sym-
metric monoidal functors Env(C) → D; there is also a forgetful functor from Env(C)
to the category of �nite sets.

The coherent version of this construction is described in [Lur17, §2.2.4]. The
analogues of multicategories are∞-operads, and an∞-operad C⊗ has an associated
symmetric monoidal envelope Env(C). The universal property of the symmetric
monoidal envelope is [Lur17, 2.2.4.9]: for any symmetric monoidal ∞-category D,
there is an equivalence between symmetric monoidal functors Env(C) → D and maps
of∞-operads C⊗ → D⊗ .

Here are some important properties of this construction.

• There is a natural symmetric monoidal functorp : Env(C) → Fin to the category
of �nite sets, whose �ber over S is equivalent to

∏
s ∈S C, and under this corre-

spondence the space of maps {Xs }s ∈S → {Yt }t ∈T over a given map f : S → T is
equivalent to a product

∏
t ∈T MapC⊗ ({Xs }s ∈f −1 (t ),Yt ) of mapping spaces.
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• The adjunction gives every symmetric monoidal∞-category a natural symmetric
monoidal functor

⊗C : Env(C) → C, sending {Xs }s ∈S to
⊗

s ∈S Xs .

Example 3.1. For any associative algebra A in C with right module M and left module
N , the two-sided bar construction B (M,A,N ) can be lifted from a simplicial object in
C to a simplicial object in Env(C).
Example 3.2. Given an associative algebra A in a symmetric monoidal∞-category C,
there exists a lift of the cyclic bar construction Z (A) from a simplical object in C to a
simplicial object in Env(C). Similarly, for an algebra A with a bimodule M , the same is
true for Z (A,M ), the cyclic bar construction with coe�cients.

4 Pushforward
If C is symmetric monoidal, the tensor functor

⊗C : Env(C) → C has a relative
version. Suppose that we have an S-indexed tuple X = {Xs }s ∈S of objects of C and a
map φ : S → T of �nite sets. Then, associated to this, we will construct a T -indexed
tuple φ! (X ) = {

⊗
s ∈f −1 (t ) Xs }t ∈T , which we refer to as the �berwise tensor, together

with a map X → φ! (X ). In the following we will exhibit some of the functoriality
properties of this construction.

We �rst require some general intermediate results.

Lemma 4.1. Suppose that C⊗ → D⊗ is a coCartesian �bration of ∞-operads. Then
the functor Env(C)⊗ → Env(D)⊗ is a coCartesian �bration of symmetric monoidal
∞-categories.

Proof. The symmetric monoidal envelope Env(C)⊗ is de�ned in [Lur17, 2.2.4.1] as the
�ber product

C⊗ ×Fin∗ Act(Fin∗).

The result follows because �bration conditions are stable under base-change. �

Lemma 4.2. Suppose that C⊗ → D⊗ is a coCartesian �bration of symmetric monoidal
∞-categories and that O⊗ is an∞-operad. Then the functor

AlgO (C) → AlgO (D)

lifts to a symmetric monoidal coCartesian �bration under the pointwise tensor product of
O-algebras from [Lur17, 3.2.4.4].

Proof. For D⊗ a symmetric monoidal∞-category and O⊗ an∞-operad, AlgO (D) is
the full subcategory of Fun(O⊗,D⊗ ) spanned by the maps of∞-operads. There is a
pointwise tensor product [Lur17, 3.2.4.4], de�ned so that maps K → AlgO (D)⊗ over
a �xed map K → Fin∗ are equivalent to commutative diagrams

K × O⊗ //

��

D⊗

��
Fin∗ × Fin∗

∧ // Fin∗

11



where the top map restricts to a map of∞-operads for any vertex of K .
By adjunction, then, the identity self-functor of AlgO (D)⊗ determines a commu-

tative diagram
AlgO (D)⊗ × O⊗ //

��

D⊗

��
Fin∗ × Fin∗

∧ // Fin∗ .

The topmost map sends pairs of inert morphisms in AlgO (D)⊗×O⊗ to inert morphisms
inD⊗ [Lur17, 3.2.4.3, (2)], and thus it is a bifunctor of∞-operads in the sense of [Lur17,
2.2.5.3].

We now apply [Lur17, 3.2.4.3] to the bifunctor AlgO (D)⊗ × O⊗ → D⊗ and the
coCartesian �bration C⊗ → D⊗ . This shows that, under the de�nition from [Lur17,
3.2.4.1], there is a coCartesian �bration

AlgO/D (C)
⊗ → AlgO (D)⊗ .

However, unravelling the de�nition of the source we �nd that this is the natural functor

AlgO (C)
⊗ → AlgO (D)⊗

under the pointwise monoidal structure. In particular, the �ber over a map of ∞-
operads f : O⊗ → D⊗ is the∞-category of sections O⊗ → C⊗ .

Moreover, by [Lur17, 3.2.4.3, (4)], a morphism α : A→ B in AlgO (C)⊗ is coCarte-
sian if and only if, for any X ∈ O, the natural transformation the map A(X ) → B (X )
of C⊗ is a coCartesian lift of its image in D⊗ . �

Proposition 4.3. If C is a symmetric monoidal∞-category, the map of functor categories
Fun(K ,Env(C)) → Fun(K , Fin) extends, up to equivalence, to a symmetric monoidal
coCartesian �bration.

Proof. Because C is symmetric monoidal, we have a coCartesian �bration C⊗ → Fin∗
and hence a coCartesian �bration

Env(C)⊗ → Env(Fin)⊗ = Finq

by Lemma 4.1.
Given a simplicial set K , viewed as a simplicial set over Fin∗ via K → {1} ⊂ Fin∗,

let K → K ⊗ → Fin∗ be a �brant replacement in the ∞-operadic model structure
[Lur17, 2.1.4.6]; K ⊗ is an∞-operad. This has the property that for any∞-operad C⊗ ,
restricting maps of∞-operads K ⊗ → D⊗ to functors K → D gives an equivalence of
functor categories

AlgK (D) ' Fun(K ,D).

For a symmetric monoidal∞-category C, we then get a commutative diagram

AlgK (Env(C)) //

��

Fun(K ,Env(C))

��
AlgK (Fin) // Fun(K , Fin).

12



The horizontal maps are equivalences, and the left-hand vertical map extends to a
symmetric monoidal coCartesian �bration by Lemma 4.2. �

Remark 4.4. The straightening of this coCartesian �bration is a symmetric monoidal
functor

Env(C,−) : Fun(K , Fin) → Cat∞ .

This sends f : K → Fin, up to equivalence, to the category Env(C, f ) of lifts F : K →
Env(C) of f and sends a natural transformationφ : f → д to a functorφ! : Env(C, f ) →
Env(C,д). Functoriality says that this respects composition in φ, and the coCartesian
property means that every natural transformation F → G over φ factors essentially
uniquely through a functor φ!F → G over φ. Moreover, the description of coCartesian
morphisms leads to the following: the map α : F → φ!F is characterized by the prop-
erty that, for any object k of K , the map α (k ) : F (k ) → (φ!F ) (k ) of C⊗ is a coCartesian
lift of the underlying map φ (k ) : f (k ) → д(k ). In other words, if F (k ) = {Xs }s ∈f (k ) ,
then

(φ!F ) (k ) =



⊗
φ (s )=t

Xs


t ∈д (k )

.

The unit of Env(D, f ) is a functor If : K → Env(D), sending an object k to an
indexed tuple {ID }s ∈f (k ) of copies of the unit for the tensor product.
Example 4.5. The quotient map φ : ∆1 → S1 of simplicial sets is a natural transfor-
mation of functors ∆op → Fin. For any algebra A in C with right module M and left
module N , the �berwise tensor φ!B (M,A,N ) of the two-sided bar construction is the
cyclic bar construction Z (A,N ⊗ M ) associated to the A-bimodule N ⊗ M .
Example 4.6. For any K , there is a constant functor ∗ : K → Fin whose value is a
singleton, and lifts of this to Env(C) are equivalent to functors K → C. There always
a natural transformation τ from any functor f : K → Fin to the constant functor with
value ∗, and under these identi�cations the functor τ!F is the tensor product functor⊗C

◦F : K → C. In particular, functoriality of �berwise tensor tells us that we have
natural equivalences

C⊗
◦φ!F =

C⊗
◦F .

5 Realization
We now consider homotopy colimits. A given diagram K → C may have a homotopy
colimit, and because C is presentable these can be made into a functorial homotopy
colimit Fun(K ,C) → C. In general, there are only natural transformations

hocolim
i

(F (i ) ⊗ G (i )) → hocolim
i, j

(F (i ) ⊗ G (j )) → (hocolim
i

F (i )) ⊗ (hocolim
j

G (j ))

without making further assumptions. The �rst map is an equivalence if the index
category is sifted (the diagonal ∆ : K → K × K is co�nal [Lur09, 5.5.8.1]), and the
second is an equivalence if the monoidal product of C preserves homotopy colimits in
each variable separately. This allows us to conclude the following.

13



Proposition 5.1. Suppose that K is sifted, that C is a symmetric monoidal∞-category
with K-indexed colimits, and that the symmetric monoidal structure preserves K-indexed
colimits in each variable. Then there is a functor

hocolim
K

: Fun(K ,C) → C

that is strong symmetric monoidal.

A commutative algebra object A in an∞-operad determines a symmetric monoidal
functor A : Fin→ Env(C), where the image of a �nite set S has a chosen equivalence
with a constant indexed tuple {A}s ∈S .

De�nition 5.2. Suppose that A is a commutative algebra object in C, that K is sifted,
and that X : K → Fin is a �xed diagram of �nite sets. We de�ne

A⊗X = hocolim
K

*
,

C⊗
◦A ◦ X+

-
.

Example 5.3. Suppose thatX is a simplicial �nite set, viewed as a functorX : ∆op → Fin.
Then A⊗X can be identi�ed with the Loday construction A⊗ |X | .

Proposition 5.4. Suppose that φ : f → д is a natural transformation of functors
K → Fin and that F : K → Env(C) lifts f . Then there is a natural equivalence

hocolim
K

*
,

C⊗
◦F+

-
→ hocolim

K
*
,

C⊗
◦φ!F+

-
.

Proof. This follows from the equivalence between
⊗C

◦φ!F and
⊗C

◦F from Exam-
ple 4.6. �

Example 5.5. If M is a right A-module N is a left A-module, then the identi�cation be-
tween the pushforward of the two-sided bar construction and a cyclic bar construction
from Example 4.5 gives us an equivalence

M ⊗A N ' THH(A;N ⊗ M ).

6 Adjoints and algebras
Envelopes are functorial: for a map of∞-operads R : D⊗ → C⊗ , there is an induced
symmetric monoidal functor Env(R) : Env(D) → Env(C). Further, if C and D are
symmetric monoidal ∞-categories, a map of ∞-operads D⊗ → C⊗ encodes a lax
symmetric monoidal functor R : D → C. There is a resulting natural transformation

C⊗
◦Env(R) → R ◦

D⊗
,

and the functor R is strong symmetric monoidal precisely when this is a natural
equivalence. Moreover, if R is the right adjoint to a strong symmetric monoidal functor
then it is lax symmetric monoidal [Lur17, 7.3.2.7]. When we apply this to categories of
lifts, we �nd the following result.
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Proposition 6.1. Suppose that R : D → C is a lax symmetric monoidal functor, and
f : K → Fin is a �xed functor. Then there are induced lax symmetric monoidal functors
Env(R, f ) : Env(D, f ) → Env(C, f ) and R : Fun(K ,D) → Fun(K ,C), together with
a lax symmetric monoidal natural transformation

D⊗
◦Env(R) ◦ F → R ◦

C⊗
◦F

for F ∈ Env(D, f ).

In general, a lax symmetric monoidal structure takes a commutative algebra to a
commutative algebra and a module to a module; a lax symmetric monoidal natural
transformation induces a natural map of commutative algebras and, on general objects,
has the structure of a compatible map of modules. In the case of these envelope
categories, this takes the following form.

Proposition 6.2. Fix a functor f : K → Fin and a lax symmetric monoidal functor
R : D → C. Then there is a natural map of commutative algebras

C⊗
R (If ) → R (ID )

in Fun(K ,C). The functor
⊗C

◦R : Env(D, f ) → Fun(K ,C) lifts to the category of⊗C
R (If )-modules; the functor R ◦

⊗D : Env(D, f ) → Fun(K ,C) lifts to the category
of R (ID )-modules; the natural transformation of Proposition 6.1 lifts to natural a map of
modules.

We now compose this with the natural transformation hocolimK ◦R → R◦hocolimK .

Proposition 6.3. Suppose that K is sifted, f : K → Fin is �xed, and that R : D → C is
a lax symmetric monoidal functor between symmetric monoidal presentable∞-categories.
Then there is a natural map of commutative algebras

R (If )
⊗f → R (ID )

inC. The functor hocolimK ◦
⊗C

◦R : Env(D, f ) → C lifts to the category ofR (ID )⊗f –
modules; the functor R ◦ hocolimK ◦

⊗D : Env(D, f ) → C lifts to the category of
R (ID )-modules; there is an induced transformation

hocolim
K

*
,

C⊗
◦R ◦ F+

-
→ R hocolim

K
*
,

D⊗
◦F+

-
of R (ID )⊗f -modules.

De�nition 6.4. Suppose that K is sifted, f : K → Fin is �xed, and that R : D → C
is a lax symmetric monoidal functor between symmetric monoidal presentable ∞-
categories. The base-change map is the natural transformation

R (ID ) ⊗
R (ID )⊗f

*
,
hocolim

K

C⊗
◦R ◦ F+

-
→ R *

,
hocolim

K

D⊗
◦F+

-
of functors Env(D, f ) → LModR (ID ) , adjoint to the map of Proposition 6.3.
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We now specialize this to the case where D is the category LModA of left modules
over a �xed commutative algebra object.

Theorem 6.5. Let A be a commutative algebra in a symmetric monoidal presentable
∞-category C. Suppose that K is sifted, f : K → Fin is �xed, and that R : LModA → C
is the forgetful functor. Then R is lax symmetric monoidal, and the base-change map is a
natural equivalence.

Proof. The functor R is right adjoint to the strong symmetric monoidal functor X 7→
A ⊗ X , and hence is lax monoidal [Lur17, 7.3.2.7]. The functor R also preserves
homotopy limits and colimits [Lur17, 4.2.3.3, 4.2.3.5].

We will �rst prove that the base-change map is an equivalence in the case where
K = ∗ is the trivial category. In this case, without loss of generality, the map f is
a choice of a �nite set S and a lift F is equivalent to an S-indexed tuple {Ms } of left
A-modules. The base-change map is the map

A ⊗
A⊗S

(⊗
Ms

)
→

⊗A
Ms .

The base-change map is an equivalence whenever each Ms is an extended module of
the form A ⊗ Xs for some Xs .

The natural augmentation of left A-modules B (A,A,M ) → M from the two-sided
bar construction gives rise to a diagram

hocolim∆op A ⊗A⊗S
⊗

B (A,A,Ms ) //

��

hocolim∆op
⊗A

B (A,A,Ms )

��
A ⊗A⊗S

⊗
Ms //

⊗A
Ms .

The top map is a homotopy colimit of a diagram of equivalences because the bar con-
struction levelwise consists of extended modules. Since C and LModA are presentable
symmetric monoidal, by de�nition the tensor product preserves homotopy colimits
in each variable and sifted homotopy colimits in general; therefore, the left and right
maps are equivalences. The bottom map is then an equivalence.

Now suppose that K is a general sifted index category with map f : K → Fin. The
base-change map is a map

A ⊗
hocolimk∈K A⊗f (k )

*.
,
hocolim

k ∈K

⊗
s ∈f (k )

F (k )s
+/
-
→ hocolim

k ∈K

A⊗
k ∈K,s ∈f (k )

F (k )s

SinceK is sifted, and the forgetful functor preserves homotopy colimits, we can rewrite
both sides as homotopy colimits indexed by k ∈ K . The base-change map is then
equivalent to the homotopy colimit of the base-change maps indexed by f (k ), which
we already showed to be equivalences. �
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7 Shape
De�nition 7.1. Let C⊗ be an∞-operad with symmetric monoidal envelope Env(C).
Given a functor X : K → Env(C), the shape of X , denoted by |X |, is the homotopy
colimit of the composite functor to the category S of spaces:

K → Env(C) → Fin ⊂ S

Example 7.2. Suppose thatX : ∆op → Env(C) is a simplicial object. Then the composite
∆op → Env(C) → Fin is a simplicial �nite set, whose geometric realization is the
shape |X |.
Example 7.3. SupposeA is an associative algebra in C. Then the functor Env(C) → Fin
takes A to the associative algebra ∗ under coproduct. The cyclic bar construction
Z ⊗ (A) maps to the cyclic bar construction Z q (∗) and the associated shape is S1.

Similarly, suppose A is an associative algebra with a left module N and a right
module M . Then Env(C) → Fin takes the two-sided bar construction Bar⊗ (M,A,N ),
whose homotopy colimit is M ⊗A N , to the two-sided bar construction Barq (∗, ∗, ∗),
which is isomorphic to the standard simplex ∆1.

De�nition 7.4. Let C⊗ be an∞-operad and Y be a Kan complex. We de�ne

Env(C)/Y = Env(C) ×S S/Y .

Proposition 7.5. Given an∞-operad C and a functorX : K → Env(C), the category of
lifts of X to a functor X̃ : K → Env(C)/Y is equivalent to the space of maps f : |X | → Y .

Proof. By de�nition of the �ber product, lifts X̃ are equivalent to lifts of the composite
K → S to S/Y ; by de�nition of the slice category, these are equivalent to lifts of
K → S to natural maps from the diagram K to Y . However, the universal property
of homotopy colimits precisely asserts that these extensions are equivalent to maps
|X | → Y . �

8 Free G-sets
In this section we will �x a �nite group G and let BG be a Kan complex classifying
principal G-bundles.

De�nition 8.1. Let Fin be the category of �nite sets, and Free(G ) the category of
�nite free left G-sets and equivariant maps. Both categories are symmetric monoidal
under disjoint union.

Remark 8.2. The category Fin is the symmetric monoidal envelope of the terminal
multicategory {∗}. In particular, any multicategory C has a canonical symmetric
monoidal functor Env(C ) → Fin, sending {xs }s ∈S to the indexing set S . Moreover, the
one-point set ∗ is an algebra in Fin and as such is classi�ed by a symmetric monoidal
functor Env(Assoc ) → Fin.

Similarly, the category Free(G ) is the symmetric monoidal envelope of a one-object
multicategory with underlying category BG.
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Proposition 8.3. Let S be the category of spaces, with Fin viewed as a full subcategory.
The functor Free(G ) → Fin/BG , given by X 7→ (pX : EG ×G X → BG ), induces an
equivalence of∞-categories

Free(G ) → Fin/BG = Fin ×S S/BG .

In particular, the space of lifts of a functor X : I → Fin to a functor X̃ : I → Free(G ) is
equivalent to the space of maps f : hocolimI X → BG, classifying principal G-bundles
on the homotopy colimit.

Proof. Because BG is path-connected, an object S → BG is equivalent in Fin/BG to the
image of G × S . Therefore, this functor is essentially surjective, and so it su�ces to
show that it is fully faithful. This amounts to the assertion that for �nite free G-sets X
and Y , the diagram

MapG (X ,Y ) //

��

Map(EG ×G X ,EG ×G Y )

��
{pX } // Map(EG ×G X ,BG )

is a homotopy pullback diagram.
This diagram decomposes as a product diagram over the orbits of X , and so it

su�ces to take X = G . However, in this case we have the standard homotopy pullback
diagram

Y //

��

EG ×G Y

��
∗ // BG .

Corollary 8.4. There is an equivalence

Free(G ) ×F in Env(C) ' Env(C)/BG .

As a result, we write diagramsK → Env(C)/BG as pairs (X , f ) of a functorX : K →
Env(C) and a classifying map f : |X | → BG.

9 Unwinding
Proposition 9.1. For an∞-operad C, there is a symmetric monoidal �berwise tensor
power functor

ψ : Env(C)/BG → Env(C)BG .

Informally, the functorψ sends a free G-set S and an S̄-indexed family {cs̄ }s̄ ∈S̄ to
the S-indexed family {cs }s ∈S with its G-action.
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Proof. For G = Cp , this is [NS17, III.3.6]; we brie�y recall their method.
The category Env(C) is symmetric monoidal, and the category Fun⊗ (Env(C),Env(C))

of symmetric monoidal functors inherits a pointwise symmetric monoidal structure.
The inclusion of the identity functor id induces a symmetric monoidal functor from
Fin, the free symmetric monoidal∞-category on {id }, to Fun⊗ (Env(C),Env(C)); the
value on S is the functor X 7→ X ⊗S . Composing with the symmetric monoidal functor
FreeG → FinBG gives a symmetric monoidal functor FreeG → Fun⊗ (Env(C),Env(C))BG .
By [NS17, III.3.7], this structure is adjoint to a symmetric monoidal functor FreeG ×Fin Env(C) →
Env(C)BG . �

De�nition 9.2. For a diagram (X , f ) : K → Env(C)/BG , represented by a map
X : K → Env(C) and a map f : |X | → BG, we de�ne the diagram obtained by
unwinding X to be the composite

ψ f X : K
(X ,f )
−−−−→ Env(C)/BG

ψ
−→ Env(C)BG .

Proposition 9.3. The composite ψ f X : K → Env(C)BG → FinBG is the diagram of
G-sets classi�ed by the map K → Free(G ). In particular, on taking shapes there is a
principal G-bundle |ψ f X | → |X |, classi�ed by the map f : |X | → BG.

Example 9.4. There is a canonical prinicipal Cn-bundle sdnS
1 → S1 [n]

−−→ BCn over
the simplicial circle, and the unwindingψ [n]Z (A) of the cyclic bar construction is the
simplicial subdivision sdnZ (A) [BHM93]. More generally, if f : P → B is a principal
G-bundle and A is a commutative algebra thenψ f (A⊗B ) = A⊗P .

By contrast, the unwindingψ [2]Z (A;M ) of the cyclic bar construction with coe�-
cients is a simplicial object

M ⊗ M ⇐ M ⊗ A ⊗ M ⊗ A W M ⊗ A⊗2 ⊗ M ⊗ A⊗2 · · ·

Reorganizing terms, the above can be regarded as the cyclic bar construction of
A⊗2 with a particular bimodule structure on M ⊗2, as in the following de�nition.

De�nition 9.5. Suppose that A is an algebra in a symmetric monoidal ∞-category
C and that M is a k-linear A-bimodule. Fix an n > 0, and let τ : A⊗n → A⊗n be a
cyclic permutation generating an action of Cn . The twisted tensor power M	n is the
pullback of the ordinary A⊗n bimodule M ⊗n along the map 1⊗ τ : (A⊗n ) ⊗ (Aop )⊗n →
(A⊗n ) ⊗ (Aop )⊗n .

Remark 9.6. This twisted bimodule is Cn-equivariant with respect to the twist maps
on M	n and A⊗n .

Proposition 9.7. There is a Cn-equivariant natural equivalence of simplicial objects

ψ [n]Z (A;M ) ' Z (A⊗n ;M	n )

in Env(C).

Remark 9.8. These “cyclic” versions of THH with coe�cients have also recently ap-
peared in the work of Malkiewich–Ponto on traces [MP18].
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10 The Tate diagonal
Fix a cyclic groupCp of prime order. For a based spaceW , there is a natural space-level
diagonal map

W → (W ∧p )Cp .

If X is a spectrum, then assembling the space-level diagonal maps gives a map called
the Tate diagonal

X → (X ⊗p )tCp ,

constructed by Greenlees–May in [GM95] and recently developed further in [NS17].
The Tate diagonal has a number of very useful properties: it is natural in X , it is imper-
vious to the action of Cp on X ⊗p , and it is lax symmetric monoidal. The compatibility
between these properties is expressed as follows.

Theorem 10.1 ([NS17, III.3.8]). For a �nite freeCp -setT with quotientT and an indexed
tuple {X t̄ }t̄ ∈T of spectra, there is a Tate diagonal

⊗
t̄ ∈T

X t̄ → *
,

⊗
t ∈T

X t̄ +
-

tCp

.

The Tate diagonal is essentially unique as a BCp -equivariant lax symmetric monoidal
transformation between functors Free(Cp ) ×Fin Sp⊗act → Sp.

Our notation expresses this in the following way. The Tate diagonal is a lax
symmetric monoidal natural transformation

Sp⊗
◦X → *.

,

Sp⊗
◦ψ f X+/

-

tCp

de�ned on (X , f ) in Env(Sp)/BCp .
Example 10.2. The lax symmetric monoidal structure then makes it possible for us to
study the relationship with module structures. Given a commutative ring spectrum k ,
the iterated multiplication map k ⊗p → k is Cp -equivariant and so there is a composite
map

ϕ : k → (k ⊗p )tCp → ktCp

called the Tate-valued Frobenius [NS17, IV.1.1].6

In these terms, we obtain the following indexed Tate diagonal.

Corollary 10.3. Given a sifted index category K , there is a natural lax symmetric
monoidal natural transformation

hocolim
K

*.
,

Sp⊗
X+/

-
→

*.
,
hocolim

K

Sp⊗
ψ f X+/

-

tCp

,

of functors Fun(K ,Env(Sp)/BCp ) → Sp.
6There are actually two maps k → k tCp of commutative algebras. One is the canonical unit k →

khCp → k tCp because k has trivial Cp -action, and the other is ϕ .
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Proof. When K is sifted, the functor hocolimK is lax symmetric monoidal by Proposi-
tion 5.1. �

Example 10.4. Suppose E → B is a principal Cp -bundle and that k is a commutative
ring spectrum. Then the Loday constructions for B and E are related by a Tate diagonal:

k ⊗B →
(
k ⊗E

)tCp
Example 10.5. Let K be ∆op , the simplicial index category. When applied to the
cyclic bar construction Z (A,M ) in Env(Sp), the Tate diagonal becomes a natural
transformation

THH(A;M ) →
[
THH(A⊗p ;M	p )

] tCp
.

on Hochschild homology with coe�cients.

11 A relative Tate diagonal
The Tate diagonal from Corollary 10.3 takes place in the category of spectra. In this
section we will examine the extent to which this admits a relative version, where X is
a diagram of modules over a commutative ring spectrum k and we attempt to replace
the monoidal structure of Sp with the monoidal structure in k-modules.

Theorem 11.1. Suppose that k is a commutative ring spectrum, K is a sifted index
category, and (X , f ) : K → Env(LModk )/BCp is a diagram with shape |X |. Then there is
a relative Tate diagonal

ktCp ⊗
k⊗|X |

*.
,
hocolim

K

Sp⊗
X+/

-
→

*.
,
hocolim

K

LModk⊗
ψ f X+/

-

tCp

.

Proof. Lax symmetric monoidality implies that the Tate diagonal

φ : k ⊗ |X | →
(
k ⊗ |ψ

f X |
)tCp

is a map of commutative ring spectra, and that the Tate diagonal

*.
,
hocolim

K

Sp⊗
X+/

-
→

*.
,
hocolim

K

Sp⊗
ψ f X+/

-

tCp

is compatible with the k ⊗ |X |-module structure on the source and the k ⊗ |ψ f X |-module
structure on the target. Similarly, the augmentation map

k ⊗ |ψ
f X | → k ⊗k |ψ

f X | ' k

is a Cp -equivarant map of commutative ring spectra, and the map

hocolim
K

Sp⊗
ψ f X → hocolim

K

LModk⊗
ψ f X
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is a Cp -equivariant map of k ⊗ |ψ f X |-modules; we can then apply Tate spectra.
Putting these together, there is a composite map

*.
,
hocolim

K

Sp⊗
X+/

-
→

*.
,
hocolim

K

LModk⊗
ψ f X+/

-

tCp

.

This is a map of k ⊗ |X |-modules, with the target module pulled back from ktCp . The
adjoint map is the desired relative Tate diagonal. �

Example 11.2. Let both K and the map K → Fin be trivial. Then the composite map
takes the form of a k-module Tate diagonal

M → (M ⊗p )tCp → (M ⊗kp )tCp .

From the point of view of genuine-equivariant homotopy theory the Tate-valued
Frobenius lifts k to a Cp -equivariant ring spectrum, and the k-module Tate diagonal
lifts M ⊗kp to a Cp -equivariant module called the relative norm of M .
Example 11.3. In the case of relative THH, this becomes a relative THH-diagonal

ktCp ⊗THH(k ) THH(A) →
[
THHk (A)

] tCp
.

There is also

ktCp ⊗THH(k ) THH(A;M ) →
[
THHk (A⊗p ;M	p )

] tCp
,

a relative THH-diagonal with coe�cients.

12 Nonexistence of a true relative diagonal
We will use a calculation with topological Hochschild homology to illustrate the nonex-
istence of the k-module Tate diagonal. We learned this result from Lars Hesselholt.

Suppose there is a k-module Tate diagonal

k⊗
s ∈S

Ms →



k⊗
t ∈T

Mf (t )



tCp

,

compatible with the one for spectra and functorial in pairs of a principal Cp -bundles
f : T → S and an S-indexed tuple of k-modules. Then we could get a k-relative THH
diagonal. We would get a diagram of the form

THH(k ) //

��

THH(k )tCp

��
k // ktCp .
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However, in the case of an Eilenberg–Mac Lane spectrum for Fp (or, more generally,
for a perfectoid ring by calculations of Bhatt–Morrow–Scholze), Hesselholt–Madsen’s
calculations show that this would give a commutative diagram of graded rings

Fp[u] //

��

Fp[u±1]

��
Fp // Fp[u±1] · {1,v}

upon taking coe�cients.

13 Smooth algebras
In this section, we assume that k is a commutative ring spectrum.

De�nition 13.1. LetA be a k-algebra andp a prime. We say that ak-linearA-bimodule
M satis�es Tate descent at p if the relative THH diagonal

ktCp ⊗THH(k ) THH(A,M ) → (THHk (A⊗kp ,M	kp )tCp

is an equivalence. If M satis�es Tate descent at all primes, we simply say that M
satis�es Tate descent.

Proposition 13.2. The collection of k-linear A-bimodules satisfying Tate descent at p is
a thick subcategory, and in particular is closed under �nite limits and colimits.

Proof. The k-module THH diagonal is a natural transformation of exact functors: it
preserves co�ber sequences. In particular, the collection of objects for which it is an
equivalence is a thick subcategory of A-bimodules. �

Proposition 13.3. Any k-linear A-bimodule of the form N ⊗k A, where N is a left
A-module that is perfect as a k-module, satis�es Tate descent.

Proof. The natural map k → A induces natural equivalences

THH(k ;N ) → THH(A;N ⊗k A)

and
THH(k ⊗p ;N	p ) → THH(A⊗p ; (N ⊗k A)	p ).

Therefore, by naturality of the Tate diagonal it su�ces to show this result when A = k .
Because the collection of N -modules satisfying Tate descent is a thick subcategory, it
su�ces to show this result when N = k in order to conclude it is true for all perfect
k-modules.

In this case, we are considering the relative THH-diagonal

ktCp ⊗THH(k ) THH(k ) →
[
THHk (k ⊗kp ;k	kp )

] tCp
,
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which simpli�es to the natural transformation

ktCp ⊗THH(k ) THH(k ) →
[
THHk (k ;k )

] tCp
.

Both sides are weakly equivalent to ktCp . Moreover, on both sides this equivalence
induced by the map

k → (k ⊗p )tCp → ktCp

in degree 0 of the simplicial diagrams de�ning THH. �

Proposition 13.4. If A is smooth, then all k-linear A-bimodules which are perfect as
left k-modules satisfy Tate descent.

Proof. Fix anyA-bimodule M which is perfect over k , and let T be the full subcategory
of k-linear A-bimodules B such that the bimodule M ⊗A B satis�es Tate descent. By
Proposition 13.3, the bimoduleA⊗kA is in T . The category T is a thick subcategory by
Proposition 13.2. By de�nition, sinceA is smooth over k ,A lies in the thick subcategory
of k-linear A-bimodules generated by A ⊗k A, and therefore A is in T .

The equivalence of bimodules M ' M ⊗A A then shows that M satis�es Tate
descent. �

Corollary 13.5. If A is smooth and proper, then A satis�es Tate descent as a bimodule
over itself.
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