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The stochastic model of classic system of particles (partons), which dynamics in-
cludes random walk in plane as well as processes of death, splitting, annihilation
and fusion of partons, is considered. A set of equations for multiparticle distri-
bution functions for this system can be described in terms of diagrams of the
Reggeon Field Theory (RFT) with supercritical pomeron, where rapidity plays a
role of the time variable. The multiparticle inclusive distributions of partons cor-
respond to multi-pomeron states in this analogy. In order to calculate the inelastic
cross section of hadron interaction at given energy we define an operator of linkage
of any pair of partons from two parton sets (the projectile and the target). The
form of the hadron-interaction (parton-linkage) operator is determined from the
requirement for the result to be in correspondence to the RFT formulas. It is
shown that the requirement of Lorentz invariance of the cross section is fulfilled
in this interpretation only at definite relation between the probabilities of parton
splitting, annihilation and fusion. Interpretation of various methods of s-channel
unitarization is discussed in terms of the model.
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Yet say not sadly: they have left us!

But say, with gratitude: they were.

— Vasily Zhukovsky

Dedication

This paper is dedicated to memory of Misha Marinov. One of the first papers
published by Misha was a work done together with Roginsky on the relation
between s- and t-channel helicity amplitudes which was important for the
description of spin particle interactions in the Regge theory. I had just come
to the field and was strongly impressed with the mathematical elegance of
this paper, especially with the fact that the direction to the unphysical point
(center-of-mass of t channel) turned out to be real and physical. Unfortunately,
this paper contained a minor mistake (a change of the helicity sign under
substitution of particle by antiparticle was not taken into account). I think
that this mistake was related to Misha’s style as it could be easily detected by
considering the simplest example of πN scattering. But Misha liked general
considerations so much that he didn’t undertake elementary tests. Later on,
these results were independently reproduced (without the mistake) in the well
known paper by Trueman and Wick where examples were carefully considered.

In the ITEP theoretical department Misha acted as a receptor, providing
information about new physical ideas, especially with advanced mathematical
technique. He was earnest about this mission and prepared his talks very
carefully. He always had a detailed plan that he followed very strictly, he did
not allow uncontrolled discussions and digressions if they were not planned.
Due to this strictness, he always managed to convey to the audience the main
ideas and his own relation to them. To this day my attitude toward many of
these topics is primarily comes from Misha’s interpretation.

Misha was a born teacher, and it was a mystery for me why he had no
students in ITEP to teach or supervise. Once I asked him to give a couple
of popular lectures on path integrals for me and some colleagues. He agreed
instantly, and as a result we got a half-year course of lectures, which was
transformed eventually into a remarkable review in Physics Reports. How
many such opportunities we have missed!

Misha tried to execute everything that he did professionally, whether it
was writing scientific paper, making tea or doing karate. Once during one of
ITEP’s Winter Schools, we were playing charades trying to show the meaning
of a word or its part by performing short skits. Misha chose to show the
word “charade” (in Russian). First, his team performed three sketches for its
parts. Then, to show the word as a whole, they repeated all these sketches
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again at a rapid pace, representing the process of the game. It was well done,
and we could see Misha’s perfectionism as a theater director. To look more
professional as an actor, he used tooth-paste for his make-up (performing the
role of a devil).

Misha’s unlimited erudition and knowledge were always at the service of
his colleagues. They consulted with him on any subject and always received
thoughtful discussion and useful references, often to old and forgotten papers.
The paper which I present in this volume illustrates how much I missed Misha’s
advice and consultations. When it has been finished I discovered the old paper
by Grassberger and Sundermeyer where the same model for reggeon field theory
was formulated.a

I liked to talk with Misha about Jewish history, the origin of Jewish names,
problems of Jewish young people during entrance examinations in universities,
etc. But I received from him just as much on Russian history and language,
literature, biology, and many other things (by the way, the origin of the word
“eikonal” appearing in this paper and its relation to the word “icon” I learned
from Misha).

Misha’s high standards influenced attitudes towards different situations,
including ethical problems within the circle of ITEP theorists. His opinion
was often crucial, and like a tuning fork, gave a point of reference. No matter,
where he is now, we will strive to attain his standards.

1 Introduction

Processes of strong interactions at high energies are described usually in frame-
work of reggeon theory.1 Systematic description of high–energy interactions of
hadrons in terms of reggeon field theory (RFT) was introduced by Gribov in
Ref. 2. These results were obtained in a hybrid field theory model by cal-
culation of Feynman diagrams containing the reggeon amplitudes as building
blocks.

Experimental data on hadron interactions show that the total cross sec-
tion is dominated by multiparticle processes and the number of secondaries
increases with energy growth. Therefore only models taking into account large
number of effective degrees of freedom (referred below as to partons for brevity)
in a fast hadron can correspond to the nature of reggeon amplitudes.

Attempts to give the parton interpretation of the reggeon amplitudes
started immediately after appearance of the notion of the reggeon. In Ref.
3 a representation of the pole reggeon diagram was introduced as a multipe-
ripheral fluctuation of the fast hadron. Simultaneous interactions of several

a I am grateful to A. Kaidalov and M. Ryskin who drew my attention to this paper.
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multiperipheral fluctuations with the target correspond to nonplanar reggeon
diagrams and explain the presence of the regge-cut contributions.4 Later on
interpretations of reggeon interactions were suggested using as inner degrees
of freedom the objects of quantum chromodynamics – the quark–gluon string
model,5 the BFKL pomeron,6 etc.

The common feature of all these models is consideration of a fast mov-
ing hadron as a complicated composite system which components (partons)
are continuously distributed in rapidity values and randomly in the impact
parameter plane. Hence, the Fock wave function of the fast hadron is a super-
position of multiparton states and its structure depends on the hadron energy.

Interaction of the hadron with a target is realized only due to interactions
of the most slow (in the target frame) partons produced step by step from faster
components (short-range interaction in the rapidity space). The amplitude of
interaction is determined by the number of slow partons n(y) in the vicinity
of the target. The probability of interaction with a target of only one of slow
partons is proportional to n(y) and corresponds to the regge-pole contribution.
Interactions of two and more partons correspond to the regge cuts of second and
higher orders. The cut contributions are sign-alternating because of shadowing
effects.

Growth of hadron cross sections with energy gives evidences in favor of
the so called supercritical pomeron (∆P = αP (0)− 1 > 0). RFT with the su-
percritical pomeron encounters a number of difficulties which are not resolved
in satisfactory way. The pole amplitude corresponding to the one-pomeron
exchange increases with energy as s∆ violating s-channel unitarity. Diagrams
of higher orders, in principle, have to restore the unitarity. However, when the
energy increases the number of essential diagrams grows drastically, and there
is no satisfactory way to sum a series of reggeon diagrams at present. Usually
one takes into account only a set of the simplest diagrams corresponding to the
eikonal or “quasi-eikonal” approximation which corresponds to account for the
non-enhanced cut only and disregards inter-pomeron interactions. The scat-
tering amplitude in this approximation looks as for scattering on almost black
disc of radius proportional to the rapidity y in correspondence to the Frois-
sart regime. In some approximations contributions of the enhanced regge cuts
were summed. E.g. in the Schwimmer approximation,7 which is justified for
hadron–nucleus interactions, the fan-type enhanced diagrams are taken into
account but reggeon loops are neglected. Analysis of more complicated sets
of diagrams was carried out in Refs. 8–10. However, the problem of construc-
tion of hadron scattering amplitude satisfying both s-channel and t-channel
unitarity is not solved up to now.

In the parton picture the increase of the one-pomeron contribution with
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energy in the regime of the supercritical pomeron means that the number of
soft partons grows exponentially with hadron rapidity, n(y) ∼ exp(∆y). Thus,
the mechanism of parton multiplication has to be present in the course of
the rapidity evolution of the partonic fluctuation. It could be splitting of the
multiperipheral ladder, gluon cascading, etc. From general arguments fusion
of partons may also take place beside splitting.

The kinetic model of parton interactions equivalent to RFT was suggested
in paper by Grassberger and Sundermeyer.11 In fact, this model gives a de-
scription of stationary structure of the Fock wave function of a fast hadron.

In the present paper we discuss interaction of two parton systems in this
model.b We analyze a possibility of consistent probabilistic interpretation of
the interaction amplitude in this approach and, particularly, its Lorentz invari-
ance.

The main assumption of the model is continuous parton evolution in rapid-
ity, i.e. an origin of slower partons from the faster predecessors. In the course
of evolution partons undergo a random walk in the impact parameter plane.
Other essential ingredients of parton dynamics are processes of splitting of one
parton into two ones and fusion of two partons into one parton. For general-
ity we consider also vanishing (“death”) one of partons at given rapidity and
“annihilation” of pair of partons at close points. The correspondence can be
proved between multiparticle parton distribution functions and multipomeron
vertices of the RFT with Lagrangian including the elementary three-pomeron
coupling and the pomeron-scattering term. Thus, the pomeron in this model
is not some specific object but just one-parton inclusive distribution, while
many-pomeron states are connected to the inclusive multiparton distributions.

In order to introduce into the model hadron–hadron interactions it is nec-
essary to define the operator of the interaction of two parton systems with
different rapidities. We show here that this operator can be defined in the way
maintaining the correspondence with the interaction amplitude given by sum-
ming all diagrams of RFT including loop diagrams. It is shown that if some
definite relation between the constants of splitting, annihilation and fusion of
partons holds, the hadron interaction amplitude depends only on the sum of
rapidities of the interacting hadrons according to the Lorentz invariance re-
quirement of the RFT. However the price for the correspondence with RFT
is a loss of the probabilistic interpretation, because the interaction operator
doesn’t have, in general, a probabilistic meaning. Nevertheless, the interaction
amplitude does not violate s-channel unitarity, if initial parton distributions
can be represented as superpositions of Poisson distributions.

b Unfortunately, I found the paper11 only after this text has been finished. I elaborated the
same kinetic model for RFT so the content of first section overlap considerably with Ref. 11.
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The layout of the paper is as follows. In Sec. 2 the model is formulated
in simplified version which does not take into account parton diffusion in the
transverse plane. In Sec. 3 the diffusion of partons in the impact parameter
plane is included and equations for the multiparticle distribution functions
are derived both in coordinate and momentum representations. The equiv-
alence of the equations for these multiparton distributions and equations for
the many-pomeron vertices in the “cut” RFT is demonstrated in Sec. 4. In
Sec. 5 we define the interaction operator for two parton sets and demonstrate
independence of inelastic cross section on a choice of Lorentz frame. In Sec. 6
the main model approximations in RFT are considered — the eikonal approx-
imation, the Schwimmer model and some others. The picture of an expanding
black disc corresponding to the Froissart regime is discussed. The problem
of s-channel unitarity is discussed in Sec. 7. Finally, in Sec. 8, we summarize
the main results of the paper and discuss briefly possible generalizations and
applications of this approach.

2 The model without diffusion

We discuss in this section the 0-dimensional model (without parton diffusion)
which possesses some typical features of the general case. This approximation
becomes adequate when it is possible to ignore parton diffusion, e.g. in the
regime of the uniform density distribution or in the case of interactions with
heavy nuclei.

Let us consider a system of partons with variable number of particles N ,
which evolves in time y due to the following elementary processes: death of
a parton, annihilation of two partons, splitting of any parton into two ones
and fusion of arbitrary parton pair into one parton. Denote the probability of
the N -parton state at the moment y as pN(y), and the probabilities of death,
annihilation, splitting and fusion of partons for the unit of time as m1, m2, λ
and ν, respectively.

The evolution equations have the form:

dpN

dy
= −(λ+m1)N pN − (ν +m2)N(N − 1) pN + λ(N − 1) pN−1

+m1(N + 1) pN+1 + ν(N + 1)N pN+1 +m2(N + 2)(N + 1)pN+2 , (N ≥ 2) ,

dp0
dy

= m1 p1 + 2m2 p2 ,

dp1
dy

= −(λ+m1) p1 + 2(m1 + ν) p2 + 6m2 p3 . (1)

The initial condition for Eqs. (1) is given by the parton distribution at the
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moment y = 0, and the conservation of the total probability p(y) =
∑∞

0 pN(y)
follows from (1):

dp

dy
= 0 . (2)

The equivalent set of equations can be written down for the factorial mo-
ments µs, defined as expectations of quantities (N)s ≡ N!/(N-s)!:

µs =
∞∑

N=0

(N)spN ≡
∞∑

N=0

N !

(N − s)!pN , (s = 0, 1, 2, . . . ) . (3)

After multiplying the both sides of the Eqs. (1) to (N)s and expressing the
products appearing in the right-hand sides in terms of (N)s, (N)s−1, . . . , we
come to the set of equations for the moments:

dµs
dy

= λs(s− 1)µs−1 + (λ−m1)sµs

− (ν +m2)s(s− 1)µs − (ν + 2m2)sµs+1 . (4)

In particular, the equation (2) for p(y) ≡ µ0(y) is reproduced at s = 0.
It is convenient to define the generating function G(w; y), which is at the

same time the exponential generating function for moments:

G(w; y) =

∞∑

N=0

pN (y)wN =

∞∑

s=0

µs(y)
(w − 1)s

s!
. (5)

It satisfies the partial differential equation:

∂G

∂y
= (1− w)(m1 − λw)

∂G

∂w
+ (1− w)[m2 + (m2 + ν)w]

∂2G

∂w2
(6)

with initial condition

G(w; 0) ≡ G0(w) =
∞∑

N=0

pN(0)w
N . (7)

The boundary condition at w = 1 is maintained automatically:

G(1; y) = 1 . (8)

In case m1 = m2 = 0 it holds at w = 0:

G(0; y) = G0(0) . (9)
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Let us consider some special cases:

(a) The absence of parton fusion and annihilation (ν = 0, m2 = 0)

In this case Eq. (5) becomes of 1st order and after the change of variables
w → γ, where

dγ =
dw

λw2 − (λ+m1)w +m1
, w(γ) =

1− (m1/λ) exp[(λ−m1)γ]
1− exp[(λ−m1)γ]

, (10)

one obtains

∂Ĝ(γ; y)

∂y
=
∂Ĝ(γ; y)

∂γ
, (11)

Ĝ(γ; 0) = Ĝ0(γ) , Ĝ(−∞; y) = 1 , (12)

with notation Ĝ(γ; y) ≡ G(w(γ); y), Ĝ0(γ) ≡ G0(w(γ)). Its solution is a func-
tion of the sum of the variables γ + y satisfying the initial condition (7),

Ĝ(γ; y) = Ĝ0(γ + y) , (13)

or, coming back to the variable w,

G(y, w) =
∑

N

W (y)NpN (0) = G0(W (y)) , (14)

where

W (y) =
1− η e∆(γ+y)
1− e∆(γ+y) =

w − η − η(w − 1) e∆y

w − η − (w − 1) e∆y
,

∆ = λ−m1 , η = m1/λ . (15)

This distribution differs significantly from the Poisson distribution being char-
acterized by a presence of strong correlations.

If there is N0 particles in the initial state, then

G(w; y) = [W (y)]
N0 , (16)

The mean value of particles increases exponentially with energy in this case:

µ1(y) = N0e
∆y , (17)
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and the second moment behaves as follows:

µ2(y) = N0

(

N0 +
1 + η

1− η

)

e2∆y − 2N0
1− η e

∆y . (18)

In case when m1 6= 0, the state without partons (N = 0) is so called
absorbing state. The probability p0(y) can only increase:

p0(y) =
η(e∆y − 1)

e∆y − η (19)

If the process of parton death dominates (∆ = λ −m1 < 0), then p0(y) → 1
at y →∞. If ∆ > 0, this probability goes to the constant η = m1/λ.

In the case of m1 = 0 the probability p0(y) ≡ 0, and the probability
distribution can be written as

pN (y) =

(
N−1

N−N0

)

e−N0∆y
(
1− e−∆y

)N−N0
. (20)

(b) The asymptotic in the fusion presence (ν 6= 0, y →∞)

When y → ∞ the state of the system approaches to the stationary state
G∞(w) = limy→∞ G(w; y) of Eq. (6), which can be found from the equation
for φ(w) ≡ dG∞/dw:

[m2 + w(m2 + ν)]
dφ

dw
+ (m1 − λw)φ = 0 . (21)

Solutions of this equation have the form

φ = Ceaw(w + c)−b , (22)

where a = λ/(m2+ν) , b = (m1m2+m1ν+m2λ)/(m2+ν)
2, c = m2/(m2+ν),

and C is determined from the initial condition. This gives

G∞(w) = 1 +

∫ w

1

φ(x)dx = 1 + C[F (w)− F (1)] , (23)

with

F (w) =
ea(w+c)

a(w + c)b
− (−a)b−1bΓ(−b,−a(w + c)) , (24)

where Γ is the standard Gamma function of two arguments.
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If m1 = m2 = 0 we get

G∞(w) = 1−B +Bea(w−1) , (25)

with the constant B determined by the initial condition.
Thus, the state of the system becomes asymptotically Poisson-like:

µ0 −−−→
y→∞

1 , µs −−−→
y→∞

Bas , s ≥ 1 ,

p0(y) = 1−B +Be−a , pN −−−→
y→∞

B
aN

N !
e−a , N ≥ 1 . (26)

Though the moments µs depend on the subscript s in power way the relations
between moments reveal the correlation connected to independence of p0 from
other states:

µ1(∞) = Ba , µs(∞) = Bas 6= [µ1(∞)]
s
.

At B = 1 one gets the purely Poisson distribution and all correlations vanish.
The value of the constant B which determines the asymptotic behavior

depends on a choice of the initial condition. Due to (9)

B =
1−G0(0)
1− e−a

. (27)

Note that G0(0) = p0(0) and if p0(0) = p0(y) = 0, then B = (1− e−a)−1.
If m1 (or m2) differs from zero the state with N = 0 is the absorbing one.

The death or annihilation processes dominate asymptotically in this case and,
eventually, the system goes to the state without particles:

pN −−−→
y→∞

δN0 , G∞(w) = 1 . (28)

This conclusion can be done from direct analysis of the kinetic equations (1),
after putting to zero the derivatives in the left-hand sides.

Note that if a = λ/ν À 1, the average number of particles in the system
is large and its state can be described preasymptotically in thermodynamic
approximation by Eq. (26), though eventually at very large y it goes to the
absorbing state.

3 Account for spatial diffusion of partons

In this section we take into account a possibility of random walk of partons
in the transverse plane in the course of evolution. We assume that a trans-
verse coordinate of a parton, bi, gets for an infinitely small interval dy an
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(isotropic) increment dbi such that (dbi)
2 = Ddy. Note that this assumption

on the character of the random walk of partons results in the linear form of
the pomeron trajectory. It is a hypothesis only and other dynamical models
for parton diffusion are conceivable.c

Let us formulate now dynamical equations for the parton system. De-
note the probability for the system to be in the state with N partons at
the moment y as pN(y), and the parton distribution in the impact plane as
ρN(y;b1, . . . ,bN). To simplify the notations we shall omit the argument y of-
ten, and denote the set of N transverse coordinates as BN ≡ {b1, . . . ,bN}. All
partons are supposed to be of the same type,d and ρN is a symmetric function
of coordinates normalized as

1

N !

∫

dBNρN(y;BN) = pN(y) , (29)

where dBN = db1 . . . dbN , and pN(y) is the probability to have the N -parton
state at the moment y.

The following changes of the state of the system for an interval dy are
possible: change of position of any parton to (dbi)

2 = Ddy; death of a parton
with the probability m1 dy; splitting of one parton into two ones with same
coordinates with the probability λ dy, and, for two partons sufficiently close
one to another, processes of their annihilation with vanishing both partons and
their fusion into one parton. Assuming that the parton size is small enough
(compared to interparton distances) the annihilation and fusion probability of
partons at points bk and bl can be described as m2 δ(bk−bl) and ν δ(bk−bl)
correspondingly.e Let us stress that the constants m2 and ν are dimensional
in contrast to the situation of Sec. 2.

Thus, the evolution equations for the densities ρN have the following form:

dρN(y;BN)

dy
= D∇2

N
ρN(y;BN)− (m1 + λ)NρN(y;BN)

+m1

∫

dbN+1ρN+1(y;BN ,bN+1) + λ

N>2∑

k,l=1

ρN−1(y;B(l)N )δ(bk − bl)

c One can consider a discrete model of parton diffusion by granulation the transverse space
into small cells. In this case the random walk is included to the kinetic scheme on equal
footing with splitting and fusion. The size of a cell plays the role of a cut-off for the model.
d If the internal quantum numbers of partons are introduced then relations between the con-
stants of the RFT corresponding to given parton model, particularly between the intercept
and the triple pomeron coupling, will be changed.
e As it was mentioned, one can consider parton coordinates as discrete quantities in order
to regularize divergences of the model. This results in the correspondingly smoothed δ

functions.
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− (m2 + ν)

N>2∑

k,l=1

ρN(y;BN)δ(bk − bl) +m2

∫

dbN+1ρN+2(y;BN ,bN+1,bN+1)

+ ν

∫

dbN+1ρN+1(y;BN ,bN+1)
N∑

k=1

δ(bk − bN+1) , (30)

where ∇2
N

=
∑N

i=1(∂
2
αρN/∂z

2
iα), α = 1, 2, and B(l)N means the set BN , from

which the coordinate bl is removed (B(l)N = BN \ bl).
One can also define the Fourier transformed distributions

σN(y;KN) =

∫

dBNρN(y;BN)e
ik1b1+···+ikNbN (31)

where KN = {k1, . . . ,kN}, with normalization

σN(y; 0, . . . , 0) = N ! pN(y) . (32)

In the momentum representation the evolution equations take the form:

dσN(y;KN)

dy
= −D

(
N∑

i=1

k2i

)

σN(y;KN)− (m1 + λ)NσN(y;KN)

+m1 σN+1(y;KN , 0) + λ

N>2∑

k,l=1

σN−1(y;K(kl)N ,kk + kl)

− (m2 + ν)

∫
dq

(2π)2

N>2∑

k,l=1

σN(y;K(kl)N ,kk + q,kl − q)

+m2

∫
dq

(2π)2
σN+2(y;KN ,q,−q)

+ ν

∫
dq

(2π)2

N∑

k=1

σN+1(y;K(k)N ,kk + q,−q) , (33)

where K(k)N = KN \ kk and K(kl)N = KN \ {kk,kl} are the sets of momenta KN

with the momentum kk or, respectively, the momenta kk and kl, removed.
It is convenient, in the spirit of statistical mechanics, to introduce

instead of distributions ρN(y,BN) a set of the multiparticle distributions
f (N)
s (y; z1, . . . zs), s = 1, . . . , N , which correspond to fixation of the coordinates
of s partons and integration over coordinates of all rest:

f (N)

s (y;Zs) =
1

N !

∫

dBN ρN(y;BN)A
(N)

s (BN |Zs) , (34)
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where, as above, Zs = {z1, . . . , zs}. Here the function

A(N)

s (BN |Zs) =
∑

I
(N)
s

δ(z1 − bi1)δ(z2 − bi2) . . . δ(zs − bis) , (35)

where summation is taken over all sets I (N)
s of noncoincident indices i1, i2 . . . is

from the set {1, 2, . . . , N}, is a sum of δ-function terms which fix coordinates
of s partons from N ones.

The total multiparticle distributions are defined by summation over states
with different number of partons:

fs(y;Zs) =
∑

N

f (N)

s (y;Zs) . (36)

The normalization of the functions f (N)
s (y;Zs) follows from Eq. (29):

∫

dZsf (N)

s (y;Zs) = (N)spN , (37)

where, as above, (N)s = N !/(N − s)! . Correspondingly, the distribution
fs(y;Zs) is normalized to the mean factorial moment:

∫

dZsfs(y;Zs) =< (N)s >≡ µs(y) . (38)

The functions f (N)
s (y;Zs) are related by the reduction equation:

f (N)

s−r(y;Zs−r) =
(N − s)!
(N − r)!

∫

dzr+1 . . . dzsf
(N)

s (y;Zs) . (39)

Quite similarly, one can introduce the momentum multiparticle distribu-
tions g(N)

s (y;Qs), connected to the functions f (N)
s with Fourier transform:

g(N)

s (y;Qs) =
∫

dZseiq1z1 . . . eiqszsf (N)

s (y;Zs) ,

gs(y;Qs) =
∑

N

g(N)

s (y;Qs) . (40)

These functions are obtained from the distributions σN(y;KN), if to put s
momenta equaled to q1, . . . , qs, and all the rest — to zeros:

g(N)

s (y;Qs) =
1

(N − s)! σN(q1, . . . , qs, 0, . . . , 0) . (41)
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The reduction relation has the form:

g(N)

s−r(y;Qs−r) =
(N − s)!
(N − r)! g

(N)

s (y;Qs−r, 0, . . . , 0
︸ ︷︷ ︸

r times

) , (42)

and normalization looks as

g(N)

s (y; 0, . . . , 0) = (N)spN ,

gs(y; 0, . . . , 0) = µs(y) . (43)

The simplest way to get the kinetic equations for multiparticle distribu-
tions is to reduce Eq. (33) by means of Eq. (42) from the function g(N)

N ≡ σN to
the function g(N)

s . This gives

d

dy
g(N)

s (y;Qs) = −D
(

s∑

a=1

q2a

)

g(N)

s (y;Qs)− (m1 + λ)Ng(N)

s (y;Qs)

+m1(N − s+ 1)g(N+1)

s (y;Qs) + λ(N + s− 1)g(N−1)

s (y;Qs)

+ λ

s>2
∑

k,l=1

g(N−1)

s−1 (y;Q(k,l)s ,qk + ql)

− (m2 + ν)

∫
dq

(2π)2

s>2
∑

k,l=1

g(N)

s (y;Q(k,l)s ,qk + q,ql − q)

− 2(m2 + ν)

∫
dq

(2π)2

s∑

k=1

g(N)

s+1(y;Q(k)s ,qk + q,−q)

− (m2 + ν)

∫
dq

(2π)2
g(N)

s+2(y;Qs,q,−q) +m2

∫
dq

(2π)2
g(N+2)

s+2 (y;Qs,q,−q)

+ ν

∫
dq

(2π)2

s∑

k=1

g(N+1)

s+1 (y;Q(k)s ,qk + q,−q)

+ ν

∫
dq

(2π)2
g(N+1)

s+2 (y;Qs,q,−q) . (44)

Note here, that when doing the reduction one has to consider separately the
cases when summation variables i, k are less and greater than s, and this
increases a number of terms with coefficients λ and ν. The combinatorial
coefficients appear in the equation due to this consideration (the common factor
(N − s)! is omitted in the equation).



336 K.G. Boreskov

Part of terms cancel after summation overN (particularly terms containing
gs+2) and one gets

d

dy
gs(y;Qs) = −D

(
s∑

a=1

q2a

)

gs(y;Qs) + (λ−m1)sgs(y;Qs)

+λ

s>2
∑

k,l=1

gs−1(y;Q(k,l)s ,qk + ql)−ν
∫

dq

(2π)2

s>2
∑

k,l=1

gs(y;Q(k,l)s ,qk+q,ql−q)

−(2m2 + ν)

∫
dq

(2π)2

s∑

k=1

gs+1(y;Q(k)s ,qk + q,−q) , (s = 1, 2, . . .) . (45)

The equation for fs(y;Zs) can be obtained both by Fourier transform of
(45) or directly from the evolution equation (30) for ρN using the definition (34)
(it is necessary again to account for accurate combinatorics for cases i, k ≤ s
and i, k > s). As a result one gets the following equations for f (N)

s :

d

dy
f (N)

s (y;Zs) = D ~∇2sf (N)

s (y;Zs)− (m1 + λ)Nf (N)

s (y;Zs)

+m1(N − s+ 1)f (N+1)

s (y;Zs) + λ(N − 1 + s)f (N−1)

s (y;Zs)

+ λ

s>2
∑

k,l=1

fN−1

s−1 (y;Z(l)s )δ(zk − zl)− (m2 + ν)

s>2
∑

k,l=1

f (N)

s (y;Zs)δ(zk − zl)

− 2(m2 + ν)

s∑

k=1

f (N)

s+1(y;Z(k)s , zk, zk)− (m2 + ν)

∫

duf (N)

s+2(y;Zs,u,u)

+m2

∫

duf (N+2)

s+2 (y;Zs,u,u) + ν

s∑

k=1

f (N+1)

s+1 (y;Z(k)s , zk, zk)

+ ν

∫

duf (N+1)

s+2 (y;Zs,u,u) , (46)

and the set of equations for the total distribution functions fs(y;Zs):
d

dy
fs(y;Zs)= D ~∇2sfs(y;Zs)+(λ−m1)sfs(y;Zs)+

+λ

s>2
∑

k,l=1

fs−1(y;Z(l)s )δ(zk − zl)−ν
s>2
∑

k,l=1

fs(y;Zs)δ(zk − zl)−

−(2m2 + ν)

s∑

k=1

fs+1(y;Z(k)s , zk, zk) , (s = 1, 2, . . .) . (47)
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Thus, we came to equations for the sets of the functions fs(y;Zs) or
gs(y;Qs) which contain only distributions averaged over states with various
numbers of partons.

4 Equivalence of the parton model to reggeon field theory

It will be shown in this section that Eqs. (45), (47) are equivalent to equations
for reggeon vertices of the reggeon field theory with a particular set of coupling
constants — the reggeon intercept ∆ = λ−m1, the trajectory slope α′ = D, the
constant of splitting of one pomeron into two ones λ, the constant of fusion
of two pomerons into one 2m2 + ν and the constant of pomeron scattering
equaled to ν.

The simplest way to see this, is to make the Mellin transform of the func-
tion gs(y):

Gs(ω;Qs) =
∫ ∞

0

dye−ωygs(y;Qs) , gs(y,Qs) =
1

2πi

∫

↑

dωeωyGs(ω;Qs) , (48)

where the integration in second formula is carried out in the complex plane ω
along the infinite contour parallel to the imaginary axis.

One gets the following set of equations for the functions Gs(ω)

ωGs(ω;Qs) = D

(
s∑

a=1

q2a

)

Gs(ω;Qs) + (λ−m1)sGs(ω;Qs)

+ λ

s∑

k,l=1

Gs−1(ω;Q(kl)s ,qk+ql)− ν
∫

dq

(2π)2

s∑

k,l=1

Gs(ω;Q(kl)s ,qk+q,ql−q)

− (2m2 + ν)

∫
dq

(2π)2

s∑

k=1

Gs+1(ω;Q(k)s ,qk+q,−q) . (49)

Let the initial condition for (45) be

gs(y = 0;Qs) = δss0 . (50)

Then gs(y;Qs) (respectively Gs(ω;Qs) in ω representation) have meaning of
vertices of transition of s0 reggeons into s reggeons. The function of free
propagation (diffusion without splitting, annihilation and fusion) of s reggeons
in the ω representation has the form

D(0)s (ω;Qs) =
(

ω −D
s∑

a=1

q2a

)−1

, (51)
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and the renormalized propagator can be defined as

Ds(ω;Qs) =
(

ω − s(λ−m1)−D
s∑

a=1

q2a

)−1

. (52)

If define the reduced vertices

Γs0s (ω;Qs) = [Ds(ω;Qs)]−1Gs(ω;Qs) , (53)

the equations (49) take the form

Γs0s (ω;Qs) = λ

s∑

k,l=1

Γs0s−1(ω;Q(kl)s ,qk + ql)Ds−1(ω;Qs)−

−ν
∫

dq

(2π)2

s∑

k,l=1

Γs0s (ω;Q(kl)s ,qk + q,ql − q)Ds(ω;Qs)−

−(2m2 + ν)

∫
dq

(2π)2

s∑

k=1

Γs0s+1(ω;Q(k)s ,qk + q,−q)Ds+1(ω;Qs) . (54)

which corresponds to the rules of reggeon diagram technique2 and is described
by diagrams of Fig. 1.

Γs0
s = λ

Ds−1

Γ
s0
s−1 − ν

Ds

Γs0
s −(2m2+ν)

Ds+1

Γ
s0
s+1

Figure 1: Diagrammatic representation of equations for the inclusive parton distributions
which reproduces diagrams of RFT

Another correspondence of Eqs. (54) with reggeon theory is their treatment
as equations of “inelastic” reggeon theory induced by Abramovsky-Gribov-
Kancheli cutting rules12 (see details in Ref. 13). Suppose that the contribu-
tion of some reggeon graph G to the scattering amplitude is schematically
represented as −iT̂ (G)({−Dk}), i.e. depends on the set of reggeon propagators
{D(yk,qk)} integrated with required weights. Its contribution to the total
cross section is σtot(G)/2 = Im[−iT̂ (G)({−Dk})]. Then (see Ref. 13) the in-
elastic discontinuity of this diagram, i.e. its contribution to the inelastic cross
section, can be written as σinel(G) = −T̂G({−2Im(iDk)}), that is it also can be
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calculated by means of reggeon theory but with cut propagators. Contributions
of the diagram G to generating functions for different inelastic characteristics
also can be determined from this theory13 by changing arguments of operator
T̂G .

Thus, evolution of the parton distributions in rapidity is described by
diagrams of reggeon field theory. The pomerons do not come out in this de-
scription as some individual propagating objects. The evolution in rapidity
of the s-pomeron state corresponds to the developing in time the s-particle
inclusive distribution of partons (i.e. when momenta of s partons are fixed and
momenta of all others are arbitrary).

5 Interaction of colliding hadrons

In previous sections the parton model was formulated which dynamics is equiv-
alent to reggeon field theory. Parton distributions at different y given by this
model can be associated with the stationary structure of parton distributions
in rapidity for a fast moving hadron (i.e. with its Fock wave function).

We define in this section the “interaction operator” of two parton systems,
which allows to calculate the amplitude for interactions of two fast colliding
hadrons. The form of this operator has to meet the requirement of correspon-
dence with calculations according to the RFT rules.

Let two hadrons h and h̃ move one toward another with rapidities y and ỹ
in some Lorentz frame at impact parameter b. The essential feature required of
the interaction operator is that Lorentz invariance of the scattering amplitude,
that is, its independence from a choice of particular Lorentz frame, should be
maintained. In other words, the amplitude should be a function of the total
rapidity Y = y + ỹ only,f but not of the individual values of y and ỹ.

The hadron states are specified by sets of parton distributions {fs(y;Zs)}
and {f̃s(ỹ; Z̃s + b)}, where designation Z̃s + b means a shift of all coordi-
nates z̃a to the vector b in the impact plane. Denote for brevity these sets as
vectors in space of states |F(y; 0)〉 and |F̃(ỹ;b)〉. In the momentum represen-
tation we shall use notation |G(y; 0)〉 and |G̃(ỹ;b)〉 for the sets {gs(y;Qs)} and
{g̃s(ỹ;Qs) exp(ib

∑s
1 qa)}.

Let the total cross section is determined as an integral of function T (y, ỹ; b)
over all impact parameter values:

σ(tot)(y, ỹ) = 2

∫

d2b T (y, ỹ; b) , (55)

f Though the hadrons move in the opposite directions, we define both y and ỹ as positive.
So the total rapidity which is the rapidity value of one hadron in the rest frame of other is
written as a sum Y = y + ỹ.
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We introduce the “interaction operator” T̂ by the following equation:

T (y, ỹ; b) = 〈F̃(ỹ;b)|T̂ |F(y; 0)〉 =

=

∞∑

s=1

(−1)s−1εs
s!

∫

dZ̃sdZsf̃s(ỹ; Z̃s)fs(y;Zs)δ(s)(Zs − Z̃s − b) , (56)

or, in momentum space,

T (y, ỹ; b) = 〈G̃(ỹ;b)|T̂ |G(y; 0)〉 =

=

∞∑

s=1

(−1)s−1εs
s!

∫
dQs
(2π)2s

eib
∑s

1 qa g̃s(ỹ;Qs)gs(y;Qs) . (57)

The parameter ε plays a role of the squared size of a parton. As we mentioned
in Sec. 3 in order to regularize some singular expressions the function εsδ(s)

should be smeared out over this range.
Let us show that the definition (56), (57) of the operator T̂ combined with

particular relation between constants provides the dependence of the function
T (y, ỹ; b) only from the single variable Y = y+ ỹ. In the momentum represen-
tation the evolution equations (45) can be symbolically written as

d

dy
|G(y;b)〉 = Ĥ|G(y;b)〉 , (58)

where the form of the operator Ĥ follows from Eq. (45). Its solution is

|G(y;b)〉 = exp
[

Ĥy
]

|G(0;b)〉 . (59)

i.e. the evolution operator exp
[

Ĥy
]

has a meaning of the Lorentz boost op-

erator. Therefore

T (y, ỹ; b) = 〈G(0; b)|eĤtỹT̂ eĤy|G(0; 0)〉 , (60)

(Ĥt is the transpose of Ĥ). If the relation

〈χ|ĤtT̂ |φ〉 = 〈χ|T̂ Ĥ|φ〉 (61)

holds for arbitrary states |φ >, |χ >, then the required property will be fulfilled:

〈χ|eĤtỹT̂ eĤy|φ〉 = 〈χ| TeĤ(y+ỹ)|φ〉 . (62)
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Let us prove the relation (61). The first, second, and fourth terms of the
matrix Ĥ (see Eq. (45)) are diagonal in the parton numbers s, and the relation
(61) is evident. The third and fifth terms (denote them as H12 and H21)
correspond to splitting and fusion of reggeons and their matrix elements have
to be conjugated to each other, i.e. 〈χ|TH21|φ〉 = 〈χ|Ht

12 T |φ〉 and vice versa.
Indeed, the matrix element of TH21 is written as

〈χ|TH21|φ〉 =− (2m2 + ν)

∞∑

s=1

(−1)s−1εs
s!

∫
dQs
(2π)2s

dq

(2π)2
χs(Qs)

×
s∑

k=1

φs+1(Q(k)s ,qk + q,−q) = (2m2 + ν)

∞∑

s=1

(−1)sεs
(s− 1)!

×
∫

dQs
(2π)2s

dq

(2π)2
χs(Qs)φs+1(Q(k)s ,qk + q,−q) , (63)

with regard that the sum over k contains s identical terms. In the matrix
element of TH12 summation over parton number starts with s̃ = 2. Hence,
after substitution s̃ = s + 1 and taking into account that the sum over k, l
contains s(s+ 1) identical terms one gets

〈χ|Ht
12 T |φ〉 =〈φ|TH12|χ〉 = λ

∞∑

s̃=2

(−1)s̃−1εs̃
s̃!

∫
dQs̃
(2π)2s̃

φs̃(Qs̃)

×
s̃∑

k,l=1

χs̃−1(Q(kl)s̃ ,qk + ql) = λ ε

∞∑

s=1

(−1)sεs
(s− 1)!

×
∫

dQs+1
(2π)2(s+1)

χs(Qs−1,qs + qs+1)φs+1(Qs+1) . (64)

After change of integration variables the both matrix elements are the same
provided

2m2 + ν = λ ε . (65)

In the case of the 0-dimensional model constants λ,m2 and ν are dimensionless,
the parameter ε in the definition of the interaction operator is not needed and
the requirement of Lorentz invariance gives the relation

2m2 + ν = λ . (66)

The conditions (65), (66) look quite natural from the point of view of RFT
(equality of three-pomeron vertices).
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(a) (b)

Figure 2: Correspondence between parton cascade history and reggeon diagrams

Let us discuss briefly relation between diagrams representing a history
of development of parton cascades and the RFT diagrams. Fig.2a gives an
example of evolution of parton distributions for the colliding hadrons with
rapidity. In this example two partons from each hadron are linked in some
intermediate Lorentz frame (s = 2 in Eqs. (56), (57)). The cascade branches
with “dead ends”, i.e. terminated in noninteracting partons (thin lines in
Fig. 2a), result in renormalization of distribution functions (see Sec. 4) after
summation over all possibilities of the “dead-end” branches. The renormalized
propagators are showed by thick lines at the figure and form a skeleton of the
parton network. Each skeleton corresponds to a particular order of reggeon
perturbation theory in number of splittings and fusions of renormalized reggeon
propagators. Different ways of linkage of partons from interacting hadrons
give different skeletons, i.e. different reggeon diagrams. The skeleton can be
imagined pictorially as a set of lines in the cascade network with non-zero
electric current flow if to ascribe definite potentials to the sets of initial points
of the projectile and target.

Note that the interaction operator (56) doesn’t have a sense of probabil-
ity of interaction for two parton systems because it takes into account only
single interactions of partons. Similar situation one can see in description of
nucleus-nucleus scattering in so called Czyź-Maximon approximation14 which
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includes only first-order interactions of every nucleon. It describes correctly
the scattering amplitude only for low nuclear densities, and account for all
orders of nucleon interactions is necessary to get unitary amplitude for high
densities. However, in case of parton model, introduction of higher order terms
into interaction operator would violate Lorentz invariance of the amplitude.

6 Examples

6.1 Eikonal approximation

Consider first hadron scattering in the model including parton diffusion but
without any parton transformations (m1 = m2 = λ = ν = 0). In this approxi-
mation each parton walks randomly and independently in the transverse plane,
therefore, if there were no correlations in the initial parton distributions for
both hadrons there will be no correlations in the course of further evolution:

fs(y;Zs) =
s∏

a=1

f1(y; za) , f̃s(ỹ; Z̃s) =
s∏

a=1

f̃1(ỹ; z̃a) . (67)

The amplitude of hadron interaction at the impact parameter b is determined
by Eq. (56) and coincides with the eikonal approximation formula (see Fig. 3a)

T (eik)(Y, b) =

∞∑

s=1

(−1)s−1
s!

χ(Y, b) = 1− e−χ(Y, b) , (68)

where Y = y + ỹ, and so called eikonal function is equal to

χ(Y, b) = ε

∫

dzf1(y, z)f̃1(ỹ, z− b) = ε

∫
dq

(2π)2
eiqbg(y,q)g̃(ỹ,q) . (69)

If the initial distributions in hadrons were of the δ-function type, then
one-particle distribution at finite y is determined by random walk only:

f1(y, z) =
1

4πyD
e
−

z2

4yD , g1(y, q) = e−yDq2 , (70)

and similarly for the hadron h̃. This gives

χ(Y, b) =
ε

4πY D
e−

b2

4Y D . (71)

If the initial distribution is given by some function r(z) with Fourier transform

s(q) =

∫

dzeiqzr(z) , (72)
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· · ·

(a) (b)
Figure 3: (a) Reggeon diagrams corresponding to the eikonal approximation; (b) Parton
interpretation of the eikonal approximation for supercritical pomeron

then the eikonal is determined by formula

χ(Y, b) = ε

∫
dq

(2π)2
eiqbs(q)s̃(q)e−Y Dq2

. (73)

It is seen that Eq. (73) corresponds to exchange of the regge pole with intercept
equaled to 1, trajectory slope α′ = D and residue s(q)s̃(q).

Often the formulae of the eikonal approximation are applied in the case of
supercritical pomeron with intercept larger than 1. It seems to be inconsistent
in the model under discussion because in the parton picture the supercritical
regime means the growth of parton number when rapidity changes and this can
occur only due to parton splitting in the course of evolution, i.e. at nonzero
value of the constant λ. The eikonal approximation in the presence of split-
ting means that among soft partons originated due to evolution of each initial
partons only one may interact with a target (see Fig. 3b). The more consistent
consideration of parton splitting allowing interaction with the target for any
parton is carried out in the next example. However, the analytic formulae can
be obtained only if parton diffusion is disregarded.

6.2 The 0-dimensional Schwimmer model

The Schwimmer model7 was developed for description of inelastic interaction of
fast hadron with heavy nucleus and corresponds to summing enhanced reggeon
diagrams in the tree approximation (see Fig. 4). If a radius of the nucleus is
large enough (RA À α′Y ), then parton diffusion can be disregarded and the
problem is equivalent to the 0-dimensional model of Sec. 2a (we assume that
λ 6= 0, m1 6= 0, m2 = ν = 0).
Choose the initial state of the projectile hadron as containing one parton with
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Figure 4: Reggeon diagrams corresponding to the Schwimmer approximation

a probability gp

p
(p)
1 = gp , p

(p)
0 = 1− gp , p

(p)
N = 0 at N ≥ 2 ,

G(p)(w, 0) = 1 + gp(w − 1) , (74)

and the initial parton distribution for the target in the Poisson form

p
(t)
N (0) =

gNt
N !

e−gt , G(t)(w, 0) = egt(w−1) , µ(t)s (0) = (gt)
s. (75)

The fusion is absent in this model, ν = 0, so the Lorentz-invariant consideration
is impossible. The interaction amplitude calculated in the laboratory frame
has according to the 0-dimensional version of the formula (56) the following
form:

Tschw(Y ) =

∞∑

s=1

(−1)s−1
s!

µ(p)s (Y ) µ(t)s (0)

= 1−G(p)(1− gt;Y ) =
gpgte

∆Y

1 +
gtλ
∆ (e∆Y − 1)

. (76)

We used the definition (5) for the generating function G(p) and its explicit form
(14), (15) as applied to the initial condition (74): G(p)(w;Y ) = gpW (Y ), with
W (Y ) from Eq. (15).
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When one estimates the cross section of hadron interaction with a nucleus
A one has to choose gt to be proportional to the nuclear density ρA(b):

gt = gN ρA(b) . (77)

For heavy nucleus (AÀ 1) in the approximation of constant density,

ρA =
A

πR2
A

θ(RA − |b|) , RA = r0A
1/3 , (78)

we come to

TA(Y, b) =
gp gNA

1/3

πr20

exp(∆Y ) θ(RA − |b|)

1 +
λgNA

1/3

r20

(

exp(∆Y )− 1
∆

) (79)

This formula coincides with the original Schwimmer formula for amplitude of
hadron–nucleus scattering in the approximation of very large nucleus. When
Y →∞ the amplitude goes to the constant limit gp∆/λ = gp(1−m1/λ) < 1.
Note that in general reggeon field theory the constants gp, ∆ and λ may be
arbitrary.

It is worth to stress that though the formula (79) coincides in form with the
Schwimmer formula obtained in RFT, the meaning of the constants entering
these formulae is different, and even their dimensions differ: in Eq. (79) the
constants gp and λ are dimensionless, and gN has dimension of length squared,
while in reggeon field theory all these constants have dimension of length.

It is easy to formulate a generalization of the Schwimmer approximation
in this approach. If the initial parton distribution in the projectile has the
Poisson form, i.e.

µ(p)s (0) = (gp)
s , G(p)(w, 0) = exp[gpw] , G(p)(w, Y ) = exp[gpw̃(Y )] , (80)

one gets the “eikonalized” Schwimmer formula

T
(eik)
schw (Y ) = 1− exp[Tschw(Y )] . (81)

Note that analysis of interaction of two heavy nuclei requires even in the
tree approximation taking into consideration not only parton splitting but their
fusion also. Moreover, as it was emphasized already, the Lorentz-invariant
parton consideration is possible only in presence both splitting and fusion of
partons provided the corresponding constants are related.
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6.3 Asymptotics of the 0-dimensional model with account for parton fusion

We consider in this section the 0-dimensional model including splitting and
fusion of partons for the case m1 = m2 = 0. Let us demonstrate the Lorentz
invariance of the parton picture for asymptotically large rapidity value Y , when
a stationary regime sets in and the interaction amplitude does not depend on
Y at all. Indeed, in this case for any frame choice one of hadron rapidities
(say, y) is large. Hence the projectile hadron is in asymptotic stationary state
(see Sec. 2b)

µ(p)s (y) = B(p)as , B(p) =
1−G(p)0 (0)

1− e−a
, a = λ/ν = 1 , (82)

and the state of a target with rapidity ỹ is given by the generating function
G(t)(ỹ, w). It is essential that the value of this function at w = 0 does not

depend on ỹ and is equal to G
(t)
0 (0).

Therefore for a = 1 the interaction amplitude does not depend on rapidity
in any Lorentz frame and equals

T∞(Y ) =

∞∑

s=1

(−1)s−1
s!

µ(p)s (y)µ(t)s (ỹ) = B(p)
[

1−G(t)(ỹ, 1− a)
]

=
[1−G(p)0 (0)][1−G(t)0 (0)]

1− e−1
. (83)

5. Two-dimensional diffusion

In presence of parton diffusion it is possible to distinguish in the parton struc-
ture of the fast hadron two characteristic regions. At the periphery where
parton density is small the parton fusion is insignificant and only diffusion and
splitting processes occur. Parton distribution in this region behaves like the
Green function of diffusion equation complemented with exponential increase
due to splitting:

f
(periph)
1 (y, z) = eλy

1

4πy
e−z2/4Dy . (84)

In the central region the parton fusion is essential and the density comes to
the stationary value

f
(centr)
1 (y, z) ≈ λ/ν . (85)
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Transition from one regime to another corresponds to equality of the central
and peripheral density values, i.e. to distances of order

R(y) ≈ 2
√
λDy . (86)

At larger distances the density decreases exponentially. Thus, the fast hadron
represents to be a disc of constant density of radius increasing proportionally
to its rapidity:

f1(y, z) '
λ

ν
θ[R(y)− z] . (87)

Obviously the interaction cross section of two such discs corresponds to the
Froissart regime: σ(Y ) ≈ const · Y 2, where Y = y + ỹ. In order to calculate
the constant value, i.e. the degree of blackness, it is necessary to account
for contributions of all multi-particle densities fs(y,Zs), f̃s(ỹ,Zs). It is not
the aim of this paper to carry out complete analysis of this problem. Let us
consider as an illustration only the simplest case when the initial state of one
of hadrons (say, h̃) contains only one parton, that is f̃1(ỹ = 0, z) = δ(b − z),
f̃s(ỹ = 0,Zs) = 0, s ≥ 2. Let us use the Lorentz invariance of the problem and
apply the formula (56) in the rest frame of the hadron h̃. Then in the formula
only the first term remains:

T (y, ỹ; b) = ε

∫

dzf1(Y ; z)f̃1(0; z̃)δ(z− z̃− b)

≈ ελ

ν
θ(R(Y )− b) = θ(R(Y )− b) , (88)

which corresponds due to relation (65) to scattering on the absolutely black
disk of radius R(Y ).

For more complicated cases (many-parton initial states) the situations
turns out to be the same — the asymptotics of the amplitude corresponds
to the scattering off a black disc. In Ref. 15 Kancheli discussed the problems
related to the Lorentz invariance of interaction of parton systems for the case
of the gray disc (with finite transparency). In present model this problem does
not appear, and both Lorentz invariance and blackness of the amplitude are
provided by relation (65).

7 Unitarity

One of the key problems of RFT is s-channel unitarity of the scattering ampli-
tude. As can be seen, the unitarity of the amplitude calculated for the model
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under consideration depends not only from the parton dynamics but also from
the initial conditions, i.e. from the form of the parton sources for each hadron.

Let us discuss under which conditions the amplitude T (Y, b) can be inter-
preted as a probability of interaction at fixed impact parameter that is satisfies
to the relation

0 < T (Y, b) < 1 . (89)

Consider first the case with d = 0 and note that if both sets of moments
µs(y), µ̃s(Y − y) in equation

T (Y, b) =

∞∑

s=1

(−1)s−1
s!

µs(y)µ̃s(Y − y) (90)

would be of Poisson form,

µs = αs , µ̃s = α̃s , (91)

the amplitude has a simple form satisfying to relations (89):

T (α,α̃)(Y, b) = 1− exp(αα̃) . (92)

This observation makes useful so called Poisson representation16 for prob-
abilities. It represents (for the simplest case) probabilities pN (y) as superpo-
sitions of Poisson distributions PN (α):

pN (y) =

∫

dαf(α, y)

{
αN

N !
e−α

}

= 〈PN (α)〉 , (93)

where we used notation 〈. . . 〉 for averaging with weight f(α, y).
The generating function G(w; y) can be written as

G(w; y) =

∫

dα f(α, y) exp[(w − 1)α] . (94)

The master equation (6) gives for f(α, y) the equation of Fokker-Planck type

∂f(α, y)

∂y
= − ∂

∂α
{A(α)}+ 1

2

∂2

∂α2
{B(α)} . (95)

where functions

A(α) = (λ−m1)α− (ν + 2m2)α
2 , B(α) = 2λα− 2(ν +m2)α

2 , (96)
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describe driving term and diffusion coefficient correspondingly. The diffusion
coefficient B is non-negative for 0 ≤ α ≤ λ/(ν + m2). The condition (8)
provides normalization of f(α, y):

∫

dαf(α, y) = 1 . (97)

Equation (95) is equivalent16 to the differential stochastic equation

dα = A(α)dy +
√

B(α)dW (y) , (98)

where dW (y) is a stochastic differential corresponding to the Wiener process.
Suppose for simplicity that m1 = m2 = 0. One can see from (98) that if

evolution starts at y = 0 at α value within interval (0, a), a = λ/ν, then the
first term will drive the system to the right end of the interval a = λ/ν). At
this point both the driving term and diffusion coefficient vanish and, therefore,
it is a stationary point. Any initial α-distribution will be concentrated at this
point when y → ∞. Thus the asymptotic distribution is Poisson distribution
PN (a), in correspondence with analysis of section 2.

Because of positivity of the diffusion coefficient B(α) at the interval (0, a),
the distribution f(α, y) is positive and normalizable in the course of evolution,
i.e. it can be considered as a probability distribution. If both f(α, y) and
f̃(α, ỹ) are of class of probability distributions, then the interaction amplitude
T (Y, b) is given by averaging of equation (92) over α and α̃,

T (Y, b) = 〈〈T (α,α̃)(Y, b)〉〉 ≡
∫

dαf(α, y)

∫

dα̃f(α̃, ỹ) [1− exp(αα̃)] , (99)

and evidently satisfies the unitarity condition (89). Consideration of two-
dimensional case can be carried out similarly.

8 Conclusions

The parton stochastic model discussed in this paper is in exact corre-
spondence with reggeon field theory. Only special reggeon field theories with
particular set of pomeron vertices allow parton interpretation of this sort. The
model reproduces results of main approximations for RFT. In the theory with
zero number of transverse dimensions, d = 0, it is possible to analyze quan-
titatively an asymptotic regime. It is equivalent to summing all diagrams of
0-dimensional RFT with all loops. For theory with d = 2 qualitative and
numerical consideration is possible. Because of its classical and stochastic na-
ture the model allows numerical simulation by means of simple Monte Carlo
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algorithm. Direct analogy with kinetic theory of chemical reactions gives good
prospects for application of thermodynamic methods and theory of stochastic
equations.

The model allows a number of generalizations, in particular to parton
systems with internal quantum numbers and various spatial scales.
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