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In this paper we extend the idea of integration to generic algebras. In particular
we concentrate over a class of algebras, that we will call self-conjugated, having the
property of possessing equivalent right and left multiplication algebras. In this case
it is always possible to define an integral sharing many of the properties of the usual
integral. For instance, if the algebra has a continuous group of automorphisms, the
corresponding derivations are such that the usual formula of integration by parts
holds. We discuss also how to integrate over subalgebras. Many examples are
discussed, starting with Grassmann algebras, where we recover the usual Berezin’s
rule. The paraGrassmann algebras are also considered, as well as the algebra of
matrices. Since Grassmann and paraGrassmann algebras can be represented by
matrices we show also that their integrals can be seen in terms of traces over the
corresponding matrices. An interesting application is to the case of group algebras
where we show that our definition of integral is equivalent to a sum over the unitary
irreducuble representations of the group. We show also some example of integration
over non self-conjugated algebras (the bosonic and the q-bosonic oscillators), and
over non-associative algebras (the octonions).
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460 R. Casalbuoni

1 Introduction

1.1 Motivations

The very idea of supersymmetry leads to the possibility of extending ordi-
nary classical mechanics to more general cases in which ordinary configuration
variables live together with Grassmann variables. More recently the idea of
extending classical mechanics to more general situations has been further em-
phasized with the introduction of quantum groups, non-commutative geometry,
etc. In order to quantize these general theories, one can try two ways: i) the
canonical formalism, ii) the path-integral quantization. In Ref. 1, 2 classical
theories involving Grassmann variables were quantized by using the canonical
formalism. But in this case, also the second possibility can be easily realized
by using the Berezin’s rule for integrating over a Grassmann algebra.3 It would
be desirable to have a way to perform the quantization of theories defined in
a general algebraic setting. In this paper we will make a first step toward
this construction, that is we will give general rules allowing the possibility of
integrating over a given algebra. Given these rules, the next step would be
the definition of the path-integral. In order to define the integration rules we
will need some guiding principle. So let us start by reviewing how the integra-
tion over Grassmann variables comes about. The standard argument for the
Berezin’s rule is translational invariance. In fact, this guarantees the validity
of the quantum action principle. However, this requirement seems to be too
technical and we would rather prefer to rely on some more physical argument,
as the one which is automatically satisfied by the path integral representa-
tion of an amplitude, that is the combination law for probability amplitudes.
This is a simple consequence of the factorization properties of the functional
measure and of the additivity of the action. In turn, these properties follow
in a direct way from the very construction of the path integral starting from
the ordinary quantum mechanics. We recall that the construction consists in
the computation of the matrix element 〈qf , tf |qi, ti〉, (ti < tf ) by inserting the
completeness relation

∫

dq |q, t〉〈q, t| = 1 (1.1)

inside the matrix element at the intermediate times ta (ti < ta < tf , a =
1, · · · , N), and taking the limit N → ∞ (for sake of simplicity we consider
here the quantum mechanical case of a single degree of freedom). The relevant
information leading to the composition law is nothing but the completeness
relation (1.1). Therefore we will assume the completeness as the basic principle
to use in order to define the integration rules over a generic algebra. In this
paper we will limit our task to the construction of the integration rules, and we
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will not do any attempt to construct the functional integral in the general case.
The extension of the relation (1.1) to a configuration space different from the
usual one is far from being trivial. However, we can use an approach that has
been largely used in the study of non-commutative geometry4 and of quantum
groups.5 The approach starts from the observation that in the normal case one
can reconstruct a space from the algebra of its functions . Giving this fact, one
lifts all the necessary properties in the function space and avoids to work on the
space itself. In this way can deal with cases in which no concrete realization
of the space itself exists. We will show how to extend the relation (1.1) to
the algebra of functions. In Section 2 we will generalize these considerations
to the case of an arbitrary algebra. In Section 3 we will discuss numerous
examples of our procedure. Other examples will be given in Sections 4 and
5. The approach to the integration of Grassmann algebras starting from the
requirement of completeness, which inspired the present work, was discussed
long ago by Martin.6

1.2 The algebra of functions

Let us consider a quantum dynamical system and an operator having a com-
plete set of eigenfunctions. For instance one can consider a one-dimensional
free particle. The hamiltonian eigenfunctions are

ψk(x) =
1√
2π

exp (−ikx) . (1.2)

Or we can consider the orbital angular momentum, in which case the eigen-
functions are the spherical harmonics Y m

` (Ω). In general the eigenfunctions
satisfy orthogonality relations

∫

ψ∗
n(x)ψm(x) dx = δnm , (1.3)

(we will not distinguish here between discrete and continuum spectrum). How-
ever ψn(x) is nothing but the representative in the 〈x| basis of the eigenkets
|n〉 of the hamiltonian

ψn(x) = 〈x|n〉 . (1.4)

Therefore the Eq. (1.3) reads
∫

〈n|x〉〈x|m〉 dx = δnm (1.5)

which is equivalent to say that the |x〉 states form a complete set and that
|n〉 and |m〉 are orthogonal. But this means that we can implement the com-
pleteness in the |x〉 space by using the orthogonality relation obeyed by the
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eigenfunctions defined over this space. On the other side, given this equa-
tion, and the completeness relation for the set {|ψn〉}, we can reconstruct the
completeness in the original space R1, that is the integration over the line.
Now, we can translate the completeness of the set {|ψn〉}, in the following two
statements

1. The set of functions {ψn(x)} span a vector space.

2. The product ψn(x)ψm(x) can be expressed as a linear combination of the
functions ψn(x), since the set {ψn(x)} is complete.

All this amounts to say that the set {ψn(x)} is a basis of an algebra. The
product rules for the eigenfunctions are

ψm(x)ψn(x) =
∑

p

cnmpψp(x) (1.6)

with

cnmp =

∫

ψn(x)ψm(x)ψ∗
p(x) dx . (1.7)

For instance, in the case of the free particle

ckk′k′′ =
1√
2π
δ(k + k′ − k′′) . (1.8)

Analogously, for the angular momentum, one has the product formula7

Y m1

`1
(Ω)Y m2

`2
(Ω) =

`1+`2
∑

L=|`1−`2|

+L
∑

M=−L

[

(2`1 + 1)(2`2 + 1)

4π(2L+ 1)

]

× 〈`1`200|L0〉〈`1`2m1m2|LM〉YM
L (Ω) , (1.9)

where 〈j1j1m1m2|JM〉 are the Clebsch-Gordan coefficients. A set of eigen-
functions can then be considered as a basis of the algebra (1.6), with struc-
ture constants given by (1.7). Any function can be expanded in terms of the
complete set {ψn(x)}, and therefore it will be convenient, for the future, to
introduce the following ket made up in terms of elements of the set {ψn(x)}

|ψ〉 =











ψ0(x)
ψ1(x)
· · ·

ψn(x)
· · ·











. (1.10)
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A function f(x) such that

f(x) =
∑

n

anψn(x) (1.11)

can be represented as
f(x) = 〈a|ψ〉 , (1.12)

where
〈a| = (a0, a1, · · · , an, · · ·) . (1.13)

To write the orthogonality relation in terms of this new formalism it is con-
venient to realize the complex conjugation as a linear operation on the set
{ψn(x)}. In fact, due to the completeness, ψ∗

n(x) itself can be expanded in
terms of ψn(x)

ψ∗
n(x) =

∑

n

Cnmψm(x), Cnm =

∫

dxψ∗
n(x)ψ

∗
m(x) , (1.14)

or
|ψ∗〉 = C|ψ〉 . (1.15)

Defining a bra as the transposed of the ket |ψ〉

〈ψ| = (ψ0(x), ψ1(x), · · · (x), ψn(x), · · ·) (1.16)

the orthogonality relation becomes
∫

|ψ∗〉〈ψ| dx =

∫

C|ψ〉〈ψ| dx = 1 . (1.17)

Notice that by taking the complex conjugate of Eq. (1.15), we get

C∗C = 1 . (1.18)

The relation (1.17) makes reference only to the elements of the algebra of
functions and it is the key element in order to define the integration rules
on the algebra. In fact, we can now use the algebra product to reduce the
expression (1.17) to a linear form

δnm =
∑

`

∫

ψn(x)ψ`(x)C`m dx =
∑

`,p

cn`pC`m

∫

ψp(x) dx . (1.19)

If the set of equations

∑

p

Anmp

∫

ψp(x) dx = δnm, Anmp =
∑

`

cn`pC`m (1.20)
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has a solution for
∫

ψp(x) dx, then we will be able to define the integration
over all the algebra, by linearity. We will show in the following that indeed
a solution exists for many interesting cases. For instance a solution always
exists, if the constant function is in the set {ψp(x)}. Let us show what we get
for the free particle. The matrix C is easily obtained by noticing that

(

1√
2π

exp(−ikx)
)∗

=
1√
2π

exp(ikx)

=

∫

dk′δ(k + k′)
1√
2π

exp(−ik′x) , (1.21)

and therefore
Ckk′ = δ(k + k′) . (1.22)

It follows

Akk′k′′ =

∫

dq δ(k′ + q)
1√
2π
δ(q + k − k′′) = 1√

2π
δ(k − k′ − k′′) (1.23)

from which

δ(k − k′) =
∫

dk′′
∫

Akk′k′′ψk′′(x)dx =

∫

1

2π
exp(−i(k − k′)x)dx . (1.24)

This example is almost trivial, but it shows how, given the structure constants
of the algebra, the property of the exponential of being the Fourier transform
of the delta-function follows automatically from the formalism. In fact, what
we have really done it has been to define the integration rules in the x
space by using only the algebraic properties of the exponential. As a result, our
integration rules require that the integral of an exponential is a delta-function.
One can perform similar steps in the case of the spherical harmonics, where
the C matrix is given by

C(`,m),(`′,m′) = (−1)mδ`,`′δm,−m′ (1.25)

and then using the constant function Y 0
0 = 1/

√
4π, in the completeness rela-

tion.
The procedure we have outlined here is the one that we will generalize

in the next Section to arbitrary algebras. Before doing that we will consider
the possibility of a further generalization. In the usual path-integral formalism
sometimes one makes use of the coherent states instead of the position operator
eigenstates. In this case the basis in which one considers the wave functions is
a basis of eigenfunctions of a non-hermitian operator

ψ(z) = 〈ψ|z〉 (1.26)
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with
a|z〉 = |z〉z (1.27)

The wave functions of this type close an algebra, as 〈z∗|ψ∗〉 do. But this time
the two types of eigenfunctions are not connected by any linear operation.
In fact, the completeness relation is defined on the direct product of the two
algebras

∫

dz∗dz

2πi
exp(−z∗z)|z〉〈z∗| = 1 . (1.28)

Therefore, in similar situations, we will not define the integration over the
original algebra, but rather on the algebra obtained by the tensor product of
the algebra times a copy. The copy corresponds to the complex conjugated
functions of the previous example.

2 Algebras

2.1 Self-conjugated algebras

We recall here some of the concepts introduced in,8 in order to define the
integration rules over a generic algebra. We start by considering an algebra A
given by n + 1 basis elements xi, with i = 0, 1, · · ·n (we do not exclude the
possibility of n→∞, or of a continuous index). We assume the multiplication
rules

xixj = fijkxk (2.1)

with the usual convention of sum over the repeated indices. For the future
manipulations it is convenient to organize the basis elements xi of the algebra
in a bra

〈x| = (x0, x1, · · · xn ) , (2.2)

or in the corresponding ket. Important tools for the study of a generic algebra
are the right and left multiplication algebras. We define the associated
matrices by

Ri|x〉 = |x〉xi, 〈x|Li = xi〈x| . (2.3)

For a generic element a =
∑

i aixi of the algebra we have Ra =
∑

i aiRi, and
a similar equation for the left multiplication. In the following we will use also

LTi |x〉 = xi|x〉 . (2.4)

The matrix elements of Ri and Li are obtained from their definition

(Ri)jk = fjik, (Li)jk = fikj . (2.5)
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The algebra is completely characterized by the structure constants. The ma-
trices Ri and Li are just a convenient way of encoding their properties. For
instance, in the case of associative algebras one has

xi(xjxk) = (xixj)xk (2.6)

implying the following relations (equivalent one with the other)

RiRj = fijkRk, LiLj = fijkLk, [Ri, L
T
j ] = 0 . (2.7)

The first two say that Ri and Li are linear representations of the algebra, called
the regular representations. The third that the right and left multiplications
commute for associative algebras. In this paper we will be interested in algebras
with identity, and such that there exists a matrix C, satisfying

Li = CRiC
−1 . (2.8)

We will call these algebras self-conjugated. In the case of associative algebras,
the condition (2.8) says that the regular representations (see Eq. (2.7)) spanned
by Li and Ri are equivalent. Therefore, the non existence of the matrix C
boils down two the possibility that the associative algebra admits inequivalent
regular representations. This happens, for instance, in the case of the bosonic
algebra.8 In all the examples we will consider here, the C matrix turns out to
be symmetric

CT = C . (2.9)

This condition of symmetry can be interpreted in terms of the opposite algebra
AD, defined by

xDi x
D
j = fjikx

D
k . (2.10)

The left and right multiplication in the dual algebra are related to those in A
by

RD
i = LTi , LDi = RT

i . (2.11)

Therefore, in the associative case, the matrices LTi are a representation of the
dual algebra

LTi L
T
j |x〉 = xjxi|x〉 = fjikL

T
k |x〉 . (2.12)

We see that the property CT = C implies that the relation (2.8) holds also for
the right and left multiplication in the opposite algebra

LDi = CRD
i C

−1 . (2.13)

In the case of associative algebras, the requirement of existence of an identity
is not a strong one, because we can always extend the given algebra to another
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associative algebra with identity.9 An extension of this type exists also for many
other algebras, but not for all. For instance, in the case of a Lie algebra one
cannot add an identity with respect to the Lie product. For self-conjugated
algebras, Li has an eigenket given by

Li|Cx〉 = CRi|x〉 = |Cx〉xi, |Cx〉 = C|x〉 (2.14)

as it follows from (2.8) and (2.3). Then, as explained in the Introduction, we
define the integration for a self-conjugated algebra by the formula

∫

(x)

|Cx〉〈x| = 1 , (2.15)

where 1 is the identity in the space of the linear mappings on the algebra. In
components the previous definition means

∫

(x)

Cijxjxk = Cijfjkp

∫

(x)

xp = δik . (2.16)

This equation is meaningful only if it is possible to invert it in terms of
∫

(x)
xp.

This is indeed the case if A is an algebra with identity (say x0 = I), 8 because
by taking k = 0 in Eq. (2.16), we get

∫

(x)

xj = (C−1)j0 . (2.17)

We see now the reason for requiring the condition (2.8). In fact it ensures that
the value (2.17) of the integral of an element of the basis of the algebra gives
the solution to the equation (2.16). In fact we have

∫

(x)

Cijxjxk = CijfjkpC
−1
p0 = (CRkC

−1)i0 = (Lk)i0 = fk0i = δik (2.18)

as it follows from xkx0 = xk. Notice that if C is symmetric we can write the
integration also as

∫

(x)

|x〉〈Cx| = 1 (2.19)

which is the form we would have obtained if we had started with the same
assumptions but with the transposed version of Eq. (2.3). We will define an
arbitrary function on the algebra by

f(x) =
∑

i

fixi ≡ 〈x|f〉 , (2.20)
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and its conjugated as

f∗(x) =
∑

ij

f̄iCijxj = 〈f |Cx〉 , (2.21)

where

|f〉 =











f0
f1
·
·
xn











, 〈f | = ( f̄0 f̄1 · · · f̄n ) , (2.22)

and f̄i is the complex conjugated of the coefficient fi belonging to the field |C.
Then a scalar product on the algebra is given by

〈f |g〉 =
∫

(x)

〈f |Cx〉〈x|g〉 =
∫

(x)

f∗(x)g(x) =
∑

i

f̄igi . (2.23)

2.2 Non self-conjugated algebras

In order to generalize the case of coherent states seen at the end of Section
1.2 we will consider now the case in which the C matrix does not exist. For
associative algebras this happens when the left and right multiplications span
inequivalent regular representations. In this case, let us take an isomorphic
copy of A, say A∗

x∗i x
∗
j = fijkx

∗
k (2.24)

and

Ri|x∗〉 = |x∗〉x∗i , 〈x∗|Li = x∗i 〈x∗i | (2.25)

with |x∗〉i = x∗i . We then define the integration over the direct product A⊗A∗

as
∫

(x,x∗)

|x∗〉〈x| = 1 , (2.26)

or
∫

(x,x∗)

x∗i xj = δij , (2.27)

giving rise to the scalar product

〈f |g〉 =
∫

(x,x∗)

f̄(x∗)g(x) =
∑

i

f̄igi . (2.28)
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2.3 Algebras with involution

In some case, as for the toroidal algebras,10 the matrix C turns out to define
a mapping which is an involution of the algebra. Let us consider the property
of the involution on a given algebra A. An involution is a linear mapping
∗ : A → A, such that

(x∗)∗ = x, (xy)∗ = y∗x∗, x, y ∈ A . (2.29)

Furthermore, if the definition field of the algebra is |C, the involution acts as
the complex-conjugation on the field itself. Given a basis {xi} of the algebra,
the involution can be expressed in terms of a matrix C such that

x∗i = xjCji . (2.30)

The Eqs. (2.29) imply

(x∗i )
∗ = x∗jC

∗
ji = xkCkjC

∗
ji (2.31)

from which
CC∗ = 1 . (2.32)

From the product property applied to the equality

Ri|x〉 = |x〉xi (2.33)

we get

(Ri|x〉)∗ = 〈x∗|R†
i = 〈x|CR

†
i = (|x〉xi)∗ = x∗i 〈x∗| = x∗i 〈x|C , (2.34)

and therefore
〈x|CR†

iC
−1 = xjCji〈x| = 〈x|LjCji (2.35)

that is
CR†

iC
−1 = LjCji (2.36)

or
CR†

xiC
−1 = Lx∗

i
. (2.37)

If Ri and Li are
∗-representations, that is

R†
xi = Rx∗

i
= RxjCji (2.38)

we obtain
CR†

xiC
−1 = CRx∗

i
C−1 = Lx∗

i
. (2.39)
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Since the involution is non-singular, we get

CRiC
−1 = Li (2.40)

and comparing with the adjoint of Eq. (2.39), we see that C is a unitary matrix
which, from Eq. (2.32), implies CT = C. Therefore we have the theorem:

Given an associative algebra with involution, if the right and left multiplica-
tions are ∗-representations, then the algebra is self-conjugated.

In this case our integration is a state in the Connes terminology.4

If the C matrix is an involution we can write the integration as

∫

(x)

|x〉〈x∗| =
∫

(x)

|x∗〉〈x| = 1 . (2.41)

2.4 Derivations

We will discuss now the derivations on algebras with identity. Recall that a
derivation is a linear mapping on the algebra satisfying

D(ab) = (Da)b+ a(Db), a, b ∈ A . (2.42)

We define the action of D on the basis elements in terms of its representative
matrix, d,

Dxi = dijxj (2.43)

If D is a derivation, then

S = exp(αD) (2.44)

is an automorphism of the algebra. In fact, it is easily proved that

exp(αD)(ab) = (exp(αD)a)(exp(αD)b) . (2.45)

On the contrary, if S(α) is an automorphism depending on the continuous
parameter α, then from (2.45), the following equation defines a derivation

D = lim
α→0

S(α)− 1

α
. (2.46)

In our formalism the automorphisms play a particular role. In fact, from
Eq. (2.45) we get

S(α)(|x〉xi) = (S(α)|x〉)(S(α)xi) (2.47)



A theory of algebraic integration 471

and therefore

Ri(S(α)|x〉) = S(α)(Ri|x〉) = S(α)(|x〉xi) = (S(α)|x〉)(S(α)xi) (2.48)

meaning that S(α)|x〉 is an eigenvector of Ri with eigenvalue S(α)xi. This
equation shows that the basis x′i = S(α)xi satisfies an algebra with the same
structure constants as those of the basis xi. Therefore the matrices Ri and Li
constructed in the two basis, and as a consequence the C matrix, are identi-
cal. In other words, our formulation is invariant under automorphisms of the
algebra (of course this is not true for a generic change of basis). The previous
equation can be rewritten in terms of the matrix s(α) of the automorphism
S(α), as

Ri (s(α)|x〉) = (s(α)|x〉) sijxj = sijs(α)Rj |x〉 , (2.49)

or
s(α)−1Ris(α) = RS(α)x . (2.50)

If the algebra has an identity element, I, (say x0 = I), then

Dx0 = 0 , (2.51)

and therefore
Dx0 = d0ixi = 0 =⇒ d0i = 0 . (2.52)

We will prove now some properties of the derivations. First of all, from the
basic defining equation (2.42) we get

Rid|x〉 = RiD|x〉 = D(Ri|x〉 = D(|x〉xi)
= d|x〉xi + |x〉Dxi = dRi|x〉+RDxi |x〉 (2.53)

or
[Ri, d ] = RDxi (2.54)

which is nothing but the infinitesimal version of Eq. (2.50). From the integra-
tion rules for a self-conjugated algebra with identity we get

∫

(x)

Dxi = dij

∫

(x)

xj = dij(C
−1)j0 (2.55)

Showing that in order that the derivation D satisfies the integration by parts
rule for any function, f(x), on the algebra

∫

(x)

D(f(x)) = 0 (2.56)
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the necessary and sufficient condition is

dij(C
−1)j0 = 0 (2.57)

implying that the d matrix must be singular and have (C−1)j0 as a null eigen-
vector.

Next we show that, if a derivation satisfies the integration by part formula
(2.56), then the matrix of related automorphism S(α) = exp(αD) obeys the
equation

Cs(α)C−1 = sT−1(α) (2.58)

and it leaves invariant the integration. The converse of this theorem is also
true. Let us start assuming that D satisfies Eq. (2.56), then

0 =

∫

(x)

D(C|x〉〈x|) =
∫

(x)

Cd|x〉〈x|+
∫

(x)

C|x〉〈Dx|

= CdC−1 + dT (2.59)

that is

CdC−1 = −dT . (2.60)

The previous expression can be exponentiated obtaining

C exp(αd)C−1 = exp(−αdT ) (2.61)

from which the equation (2.58) follows, for s(α) = exp(αd). To show the
invariance of the integral, let us consider the following identity

1 =

∫

(x)

sT−1|Cx〉〈x|sT =

∫

(x)

Cs|x〉〈x|sT =

∫

(x)

C|Sx〉〈Sx| =
∫

(x)

C|x′〉〈x′| ,

(2.62)
where x′ = Sx, and we have used Eq. (2.58). For any automorphism of the
algebra we have

∫

(x′)

|Cx′〉〈x′| = 1 (2.63)

since the numerical values of the matrices Ri and Li, and consequently the C
matrix, are left invariant. Comparing Eqs. (2.62) and (2.63) we get

∫

(x′)

=

∫

(x)

. (2.64)
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On the contrary, if the integral is invariant under an automorphism of the
algebra, the chain of equalities

1 =

∫

(x′)

|Cx′〉〈x′| =
∫

(x)

|Cx′〉〈x′| =
∫

(x)

Cs|x〉〈x|sT = CsC−1sT (2.65)

implies Eq. (2.58), together with its infinitesimal version Eq. (2.60). From this
(see the derivation in (2.59)), we see that the following relation holds

0 =

∫

(x)

D(Cijxjxk) , (2.66)

and by taking xk = I,
∫

(x)

Dxi = 0 (2.67)

for any basis element of the algebra. Therefore we have proven the following
theorem:

If a derivation D satisfies the integration by part rule, Eq. (2.56), the integra-
tion is invariant under the related automorphism exp (αD). On the contrary,
if the integration is invariant under a continuous automorphism, exp (αD), the
related derivation, D, satisfies (2.56).

This theorem generalizes the classical result about the Lebesgue integral re-
lating the invariance under translations of the measure and the integration by
parts formula.

Next we will show that, always in the case of an associative self-conjugated
algebra, A, with identity, there exists a set of automorphisms such that the
measure of integration is invariant. This is the of the inner derivations. In
the case of an associative algebra A with identity the set coincides with the
adjoint representation of Lie A (the Lie algebra generated by [a, b] = ab− ba,
for a, b ∈ A). That is

d = Ra − LTa , (2.68)

or
Dxi = xia− axi = −(ad a)ijxj . (2.69)

We can now proof the following theorem:

For an associative self-conjugated algebra with identity, such that CT = C,
the measure of integration is invariant under the automorphisms generated by
the inner derivations, or, equivalently, the inner derivations satisfy the rule of
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integration by parts.

In fact, this follows at once from Eq. (2.60)

CdC−1 = C(Ra−LTa )C−1 = La− (CT−1
LaC

T )T = La−RT
a = −dT . (2.70)

2.5 Integration over a subalgebra

Let us start with a self-conjugated algebra A with generators xi, i = 0, · · · , n.
Let us further suppose that A has a self-conjugated sub-algebra B with gener-
ators yα, with α = 0, · · · ,m, m < n. As a vector space the algebra A can be
decomposed as

A = B ⊕ C . (2.71)

The vector space C is generated by vectors va, with a = 1, · · ·n−m. Since B
is a subalgebra we have multiplication rules

yαyβ = fαβγyγ

vayα = faαβyβ + faαbvb

vavb = fabcvc + fabαyα . (2.72)

By definition the integration is defined both in A and in B. Our aim is to
reconstruct the integration over B as an integration over A with a convenient
measure. To this end, let us consider the matrix S which realizes the change
of basis from xi to (yα, va), that is

yα = Sαixi, va = Saixi . (2.73)

This matrix is invertible by hypothesis, and we can reconstruct the original
basis as

xi = (S−1)iαyα + (S−1)iava . (2.74)

To reconstruct the integration over B in terms of an integration over A, we
will construct a function on the algebra

P = pixi (2.75)

such that
∫

(A)

vaP = 0,

∫

(A)

yαP =

∫

(B)

yα . (2.76)

These are equivalent to require
∫

(A)

AP =

∫

(A)

BP =

∫

(B)

B . (2.77)
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These are n+1 conditions over the n+1 unknown pi. We will see immediately
that there is one and only one solution to the problem. In fact, by using the
matrix S we can make more explicit the previous equations by writing

0 =

∫

(A)

vaP = Saipj

∫

(A)

xixj . (2.78)

Recalling that by definition A is

∫

(A)

xixj = (C−1
A )ij (2.79)

we get

0 = Saipj(C
−1
A )ij (2.80)

and in analogous way

(SC−1
A )αjpj =

∫

(B)

yα (2.81)

from which we obtain

(SC−1
A )αjpj = (C−1

B )α0 . (2.82)

Since both S and C are invertible, the problem has a unique solution given by

pi = (CAS
−1)iα(C

−1
B )α0 . (2.83)

2.6 Change of variables

Consider again a self-conjugated algebra and the following linear change of
variables

x′i = Sijxj . (2.84)

The integration rules with respect to the new variables are

∫

x′
x′ix

′
j = (C ′−1)ij , (2.85)

where C ′ satisfies

L′
i = C ′R′

iC
′−1 (2.86)

and the right and left multiplications in the new basis are related to the ones
in the old basis in the following manner. From

R′
i|x′〉 = |x′〉x′i (2.87)
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we get

R′
iS|x〉 = S|x〉Sijxj = SijSRj |x〉 , (2.88)

or

R′
i = SijSRjS

−1 (2.89)

and analogously

L′
i = SijS

T−1LjS
T . (2.90)

In the new basis the R- and L-representations are still equivalent (L′
i =

C ′R′
iC

′−1
) implying

ST−1LiS
T = C ′SRiS

−1C ′−1
, (2.91)

or

Li =
(

STC ′S
)

Ri
(

STC ′S
)−1

. (2.92)

Therefore we must have (Li = CRiC
−1)

C = STC ′SA (2.93)

with A invertible and

[Ri, A] = 0 . (2.94)

We get

(C ′−1)ij =

∫

x′
x′ix

′
j =

∫

x′
SilSjmxlxm (2.95)

from which
∫

x′
xlxm = (S−1C ′−1ST

−1
)lm (2.96)

and in particular
∫

x′
xi = (S−1C ′−1ST

−1
)i0 . (2.97)

The result can also be expressed in terms of the matrix A defined in Eq. (2.93)

A = S−1C ′−1ST
−1
C (2.98)

obtaining
∫

x′
xixj = (AC−1)ij . (2.99)
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3 Examples of associative self-conjugated algebras

3.1 The Grassmann algebra

We will discuss now the case of the Grassmann algebra G1, with generators
1, θ, such that θ2 = 0. The multiplication rules are

θiθj = θi+j , i, j, i+ j = 0, 1 (3.1)

and zero otherwise. From the multiplication rules we get the structure con-
stants

fijk = δi+j,k, i, j, k = 0, 1 (3.2)

from which the explicit expressions for the matrices Ri and Li follow

(R0)ij = fi0j = δi,j =

(

1 0
0 1

)

(R1)ij = fi1j = δi+1,j =

(

0 1
0 0

)

(L0)ij = f0ji = δi,j =

(

1 0
0 1

)

(L1)ij = f1ji = δi,j+1 =

(

0 0
1 0

)

. (3.3)

Notice that R1 and L1 are nothing but the ordinary annihilation and creation
Fermi operators with respect to the vacuum state |0〉 = (1, 0). The C matrix
exists and it is given by

(C)ij = δi+j,1 =

(

0 1
1 0

)

. (3.4)

The eigenket of Ri is

|θ〉 =
(

1
θ

)

(3.5)

and the completeness reads

∫

G1

|θ〉〈θ| =
∫

G1

(

θ 0
1 θ

)

=

(

1 0
0 1

)

(3.6)

or
∫

G1

θiθ1−j = δi,j (3.7)
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which means
∫

G1

1 = 0,

∫

G1

θ = 1 . (3.8)

The case of a Grassmann algebra Gn, which consists of 2n elements ob-
tained by n anticommuting generators θ1, θ2, · · · , θn, the identity, 1, and by
all their products, can be treated in a very similar way. In fact, this algebra
can be obtained by taking a convenient tensor product of n Grassmann alge-
bras G1, which means that the eigenvectors of the algebra of the left and right
multiplications are obtained by tensor product of the eigenvectors of Eq. (2.3).
The integration rules extended by the tensor product give

∫

Gn

θnθn−1 · · · θ1 = 1 (3.9)

and zero for all the other cases, which is equivalent to require for each copy
of G1 the equations (3.8). It is worth to mention the case of the Grassmann
algebra G2 because it can be obtained by tensor product of G1 times a copy
G∗1 . Then we can apply our second method of getting the integration rules and
show that they lead to the same result with a convenient interpretation of the
measure. The algebra G2 is generated by θ1, θ2. An involution of the algebra
is given by the mapping

∗ : θ1 ↔ θ2 (3.10)

with the further rule that by taking the ∗ of a product one has to exchange the
order of the factors. It will be convenient to put θ1 = θ, θ2 = θ∗. This allows
us to consider G2 as G1 ⊗ G∗1 ≡ (G1,

∗). Then the ket and bra eigenvectors of
left and right multiplication in G1 and G∗1 respectively are given by

〈θ| = (1, θ) |θ∗〉 =
(

1
θ∗

)

(3.11)

with
Ri|θ∗〉 = |θ∗〉θ∗i, 〈θ|Li = θi〈θ| . (3.12)

The completeness relation reads
∫

(G1,∗)

|θ∗〉〈θ| =
∫

(G1,∗)

(

1 θ
θ∗ θ∗θ

)

=

(

1 0
0 1

)

. (3.13)

This implies
∫

(G1,∗)

1 =

∫

(G1,∗)

θ∗θ = 1

∫

(G1,∗)

θ =

∫

(G1,∗)

θ∗ = 0 . (3.14)



A theory of algebraic integration 479

These relations are equivalent to the integration over G2 if we do the following
identification

∫

(G1,∗)

=

∫

G2

exp(θ∗θ) . (3.15)

The origin of this factor can be traced back to the fact that we have

〈θ|θ∗〉 = 1 + θθ∗ = exp(−θ∗θ) . (3.16)

3.2 The paragrassmann algebra

We will discuss now the case of a paragrassmann algebra of order p, Gp1 , with
generators 1, and θ, such that θp+1 = 0. The multiplication rules are defined
by

θiθj = θi+j , i, j, i+ j = 0, · · · , p (3.17)

and zero otherwise. From the multiplication rules we get the structure con-
stants

fijk = δi+j,k, i, j, k = 0, 1, · · · , p (3.18)

from which we obtain the following expressions for the matrices Ri and Li:

(Ri)jk = δi+j,k, (Li)jk = δi+k,j , i, j, k = 0, 1 · · · , p . (3.19)

The C matrix exists and it is given by

(C)ij = δi+j,p . (3.20)

In fact

(CRiC
−1)lq = δl+m,pδi+m,nδn+q,p = δi+p−l,p−q = δi+q,l = (Li)lq . (3.21)

The ket and the bra eigenvectors of Li are given by

C|θ〉 =







θp

θp−1

·
1






, 〈θ| = (1, θ · · · , θp) (3.22)

and the completeness reads

∫

Gp1

θp−iθj = δij (3.23)
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which means
∫

Gp1

1 =

∫

Gp1

θ =

∫

Gp1

θp−1 = 0 , (3.24)

∫

Gp1

θp = 1 (3.25)

in agreement with the results of Ref. 6 (see also Ref. 11).

3.3 The algebra of matrices

Since an associative algebra admits always a matrix representation, it is in-
teresting to consider the definition of the integral over the algebra AN of the
N ×N matrices. These can be expanded in the following general way

A =
N
∑

n,m=1

e(nm)anm , (3.26)

where e(nm) are N2 matrices defined by

e
(nm)
ij = δni δ

m
j , i.j = 1, · · · , N . (3.27)

These special matrices satisfy the algebra

e(nm)e(pq) = δmpe
(nq) . (3.28)

Therefore the structure constants of the algebra are given by

f(nm)(pq)(rs) = δmpδnrδqs (3.29)

from which

(R(pq))(nm)(rs) = δpmδqsδnr, (L(pq))(nm)(rs) = δqrδpnδms . (3.30)

The matrix C can be found by requiring that |Cx〉 is an eigenstate of Lpq, that
is

(L(pq))(nm)(rs)[F (e)]
(rs) = [F (e)](nm)e(pq) , (3.31)

where
F (e)(nm) = C(nm)(rs)e

(rs) . (3.32)

We get
[F (e)](qm)δpn = [F (e)](nm)e(pq) . (3.33)
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By looking at the Eq. (3.28), we see that this equation is satisfied by

[F (e)](rs) = e(sr) . (3.34)

It follows
C(mn)(rs) = δmsδnr . (3.35)

It is seen easily that C satisfies

CT = C∗ = C, C2 = 1 . (3.36)

Therefore the matrix algebra is a self-conjugated one. One easily checks that
the right multiplications satisfy Eq. (2.39), and therefore C is an involution.
More precisely, since

e(mn)∗ = C(mn)(pq)e
(pq) = e(nm) (3.37)

the involution is nothing but the hermitian conjugation

A∗ = A†, A ∈ AN . (3.38)

The integration rules give

(C−1)(rp)(qs) = δrsδpq =

∫

(e)

e(rp)e(qs) = δpq

∫

(e)

e(rs) . (3.39)

We see that this is satisfied by
∫

(e)

e(rs) = δrs . (3.40)

This result can be obtained also using directly Eq. (2.17), noticing that the
identity of the algebra is given by I =

∑

n e
(n,n). Therefore

∫

(e)

e(rs) =
∑

n

(C−1)(rs)(nn) =
∑

n

δnsδnr = δrs (3.41)

and, for a generic matrix

∫

(e)

A =

N
∑

m,n=1

anm

∫

(e)

e(nm) = Tr(A) . (3.42)

Since the algebra of the matrices is associative, the inner derivations are given
by

DBA = [A,B] (3.43)
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Therefore
∫

(e)

DBA =

∫

(e)

[A,B] = 0 , (3.44)

and we see that the integration by parts formula corresponds to the cyclic
property of the trace.

3.4 The subalgebra AN−1

Consider the algebra AN of the N × N matrices, and its subalgebra AN−1.
We have the decomposition

AN = AN−1 ⊕ C (3.45)

with

C =
N−1
∑

i=1

(

e(i,N) ⊕ e(N,i)
)

⊕ e(N,N) , (3.46)

and

AN−1 =
N−1
∑

i,j=1

⊕e(i,j) . (3.47)

Let us put

P =

N
∑

i,j=1

pije
(i,j) , (3.48)

then we require
∫

AN

CP = 0 (3.49)

which implies
∫

AN

e(i,N)P = pNi = 0 , (3.50)

and analogously
piN = pNN = 0 . (3.51)

The other condition
∫

AN

AN−1P =

∫

AN−1

AN−1 (3.52)

gives
∫

AN

e(i,j)P = pji = δij . (3.53)
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Therefore,

P =

(

1N−1 0
0 0

)

, (3.54)

where 1N−1 is the identity matrix in N − 1 dimensions. This result can be
checked immediately by computing the product ANP with A a generic matrix
of AN

ANP =

(

AN−1 B
C D

)(

1N−1 0
0 0

)

=

(

AN−1 0
C 0

)

(3.55)

implying

∫

AN

ANP = Tr(ANP ) = Tr(AN−1) =

∫

AN−1

AN−1 . (3.56)

3.5 Paragrassmann algebras as subalgebras of Ap+1

A paragrassmann algebra of order p can be seen as a subalgebra of the matrix
algebra Ap+1. In fact, since this algebra is associative it has a matrix repre-
sentation (the regular one) in terms the (p+ 1)× (p+ 1) right multiplication
matrices, Ri (see Eq. (3.19). These are given by

(Ri)jk = δi+j,k . (3.57)

Defining

Rθ ≡ R1 (3.58)

we can write, in terms of the matrices defined in Eq. (3.27)

Rθ =

p
∑

i=1

e(i,i+1) (3.59)

and

Rk
θ =

p+1−k
∑

i=1

e(i,i+k) . (3.60)

Therefore, the most general function on the paragrassmann algebra (as a sub-
algebra of the matrices (p+ 1)× (p+ 1)) is given by

f(Rθ) =

p+1
∑

i=1

aiR
p+1−i
θ =

p+1
∑

i=1

ai

i
∑

j=1

e(j,p+1+j−i) . (3.61)
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In order to construct the matrix P defined in Section (2.5), let us consider a
generic matrix B ∈ Ap+1. We can always decompose it as (see later)

B = f(Rθ) + B̃ . (3.62)

In order to construct this decomposition, let us consider the most general
(p+ 1)× (p+ 1) matrix. We can write

B =

p+1
∑

i,j=1

bije
(ij) =

p+1
∑

i=1

p
∑

j=1

bije
(ij) +

p+1
∑

i=1

bi,p+1e
(i,p+1) . (3.63)

By adding and subtracting

p+1
∑

i=2

bi,p+1

i−1
∑

j=1

e(j,p+1+j−i) (3.64)

we get the decomposition (3.62) with

f(Rθ) =

p+1
∑

i=1

bi,p+1R
p+1−i
θ (3.65)

and

B̃ =

p+1
∑

i=1

p
∑

j=1

bije
(ij) −

p+1
∑

i=2

bi,p+1

i−1
∑

j=1

e(j,p+1+j−i) . (3.66)

Now, we can check that the matrix P such that
∫

θ

f(θ) =

∫

Ap+1

BP =

∫

Ap+1

f(Rθ)P (3.67)

is given by
P = e(p+1,1) . (3.68)

In fact, we have
B̃e(p+1,1) = 0 (3.69)

implying
Be(p+1,1) = f(Rθ)e

(p+1,1) . (3.70)

Furthermore

Tr[Rk
θe

(p+1,1)] =

p+1−k
∑

i=1

Tr[e(i,i+k)e(p+1,1)] = Tr[e(p+1−k,1)] = δp,k (3.71)
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and therefore
∫

θ

θk = Tr[Rk
θe

(p+1,1)] = δp,k (3.72)

showing that e(p+1,1) is the matrix P we were looking for.
We notice that the matrices B̃ and f(Rθ) appearing in the decomposition

(3.62) can be written more explicitly as

B̃ =













b̃1,1 b̃1,2 · · · b̃1,p 0
· · · · ·
· · · · ·
b̃p,1 b̃p,2 · · · b̃p,p 0

b̃p+1,1 b̃p+1,2 · · · b̃p+1,p 0













(3.73)

and

f(Rθ) =























ap+1 ap ap−1 · · · a2 a1

0 ap+1 ap · · · a3 a2

0 0 ap+1 · · · a4 a3

· · · · · ·
· · · · · ·
0 0 0 · · · ap ap−1

0 0 0 · · · ap+1 ap
0 0 0 · · · 0 ap+1























. (3.74)

The p× (p+1) parameters appearing in B̃ and the p+1 parameters in f(Rθ)
can be easily expressed in terms of the (p + 1) × (p + 1) parameters defining
the matrix B.

In the particular case of a Grassmann algebra we have

Rθ = e(1,2) =

(

0 1
0 0

)

= σ+, P = e(2,1) =

(

0 0
1 0

)

= σ− . (3.75)

The decomposition in Eq. (3.62), for a 2× 2 matrix

B = a+ bσ3 + cσ+ + dσ− (3.76)

is given by

B̃ = b(1 + σ3) + dσ−, f(Rθ) = f(σ+) = a− b+ cσ+ (3.77)

and the integration is
∫

(θ)

f(θ) = Tr[f(σ+)σ−] (3.78)

from which
∫

(θ)

1 = Tr[σ−] = 0,

∫

(θ)

θ = Tr[σ+σ−] = 1 . (3.79)
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3.6 Projective group algebras

Let us start defining a projective group algebra. We consider an arbitrary
projective linear representation, a → x(a), a ∈ G, x(a) ∈ A(G), of a given
group G. The representation A(G) defines in a natural way an associative
algebra with identity (it is closed under multiplication and it defines a generally
complex vector space). This algebra will be denoted by A(G). The elements
of the algebra are given by the combinations

∑

a∈G

f(a)x(a) . (3.80)

For a group with an infinite number of elements, there is no a unique definition
of such an algebra. The one defined in Eq. (3.80) corresponds to consider a
formal linear combination of a finite number of elements of G. This is very
convenient since we will not be concerned here with topological problems.
Other definitions correspond to take complex functions on G such that

∑

a∈G

|f(a)| <∞ . (3.81)

Or, in the case of compact groups, the sum is defined in terms of the Haar in-
variant measure. In the following we will not need to be more precise about this
point. The basic product rule of the algebra follows from the group property

x(a)x(b) = eiα(a,b)x(ab) , (3.82)

where α(a, b) is called a cocycle. This is constrained, by the requirement of
associativity of the representation, to satisfy

α(a, b) + α(ab, c) = α(b, c) + α(a, bc) . (3.83)

Changing the element x(a) of the algebra by a phase factor eiφ(a), that is,
defining

x′(a) = e−iφ(a)x(a) (3.84)

we get

x′(a)x′(b) = ei(α(a,b)−φ(ab)+φ(a)+φ(b))x′(ab) . (3.85)

This is equivalent to change the cocycle to

α′(a, b) = α(a, b)− [φ(ab)− φ(a)− φ(b)] . (3.86)
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In particular, if α(a, b) is of the form φ(ab)−φ(a)−φ(b), it can be transformed
to zero, and therefore the corresponding projective representation is isomorphic
to a vector one. For this reason the combination

α(a, b) = φ(ab)− φ(a)− φ(b) (3.87)

is called a trivial cocycle. Let us now discuss some properties of the cocycles.
We start from the relation (e is the identity element of G)

x(e)x(e) = eiα(e,e)x(e) . (3.88)

By the transformation x′(e) = e−iα(e,e)x(e), we get

x′(e)x′(e) = x′(e) . (3.89)

Therefore we can assume
α(e, e) = 0 . (3.90)

Then, from
x(e)x(a) = eiα(e,a)x(a) (3.91)

multiplying by x(e) to the left, we get

x(e)x(a) = eiα(e,a)x(e)x(a) (3.92)

implying
α(e, a) = α(a, e) = 0 . (3.93)

where the second relation is obtained in analogous way. Now, taking c = b−1

in Eq. (3.83), we get

α(a, b) + α(ab, b−1) = α(b, b−1) . (3.94)

Again, putting a = b−1

α(b−1, b) = α(b, b−1) . (3.95)

We can go farther by considering

x(a)x(a−1) = eiα(a,a−1)x(e) (3.96)

and defining

x′(a) = e−iα(a,a−1)/2x(a) (3.97)

from which

x′(a)x′(a−1) = e−iα(a,a−1)x(a)x(a−1) = x(e) = x′(e) . (3.98)
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Therefore we can transform α(a, a−1) to zero without changing the definition
of x(e),

α(a, a−1) = 0 . (3.99)

As a consequence, equation (3.94) becomes

α(a, b) + α(ab, b−1) = 0 . (3.100)

We can get another relation using x(a−1) = x(a)−1

x(a−1)x(b−1) = eiα(a−1,b−1)x(a−1b−1) = x(a)−1x(b)−1

= (x(b)x(a))−1 = e−iα(b,a)x(a−1b−1) (3.101)

from which
α(a−1, b−1) = −α(b, a) (3.102)

and together with Eq. (3.100) we get

α(ab, b−1) = α(b−1, a−1) . (3.103)

The last two relations will be useful in the following. From the product rule

x(a)x(b) = eiα(a,b)x(ab) =
∑

c∈G

fabcx(c) (3.104)

we get the structure constants of the algebra

fabc = δab,ce
iα(a,b) . (3.105)

The delta function is defined according to the nature of the sum over the group
elements.

To define the integration over A(G), we start as usual by introducing a
ket with elements given by x(a), that is |x〉a = x(a), and the corresponding
transposed bra 〈x|. From the algebra product, we get immediately

(R(a))bc = fbac = δba,ce
iα(b,a), (L(a))bc = facb = δac,be

iα(a,c) . (3.106)

We show now that also these algebras are self-conjugated. Let us look for
eigenkets of L(a)

L(a)|Cx〉 = |Cx〉x(a) (3.107)

giving

δac,b(Cx)ce
iα(a,c) = eiα(a,a−1b)(Cx)a−1b = (Cx)bx(a) . (3.108)
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By putting
(Cx)a = kax(a

−1) (3.109)

we obtain
ka−1bx(b

−1a)eiα(a,a−1b) = kbe
iα(b−1,a)x(b−1a) . (3.110)

Then, from Eqs. (3.103) and (3.102)

ka−1b = kb . (3.111)

Therefore ka = ke, and assuming ke = 1, it follows

(Cx)a = x(a−1) = x(a)−1 (3.112)

giving
Ca,b = δab,e . (3.113)

This shows also that
CT = C (3.114)

at least in the cases of discrete and compact groups. The mapping C : A → A
is an involution of the algebra. In fact, by defining

x(a)∗ = x(b)Cb,a = x(a−1) = x(a)−1 (3.115)

we have (x(a)∗)∗ = x(a), and x(b)∗x(a)∗ = (x(a)x(b))∗. From our general rule
of integration (see Eq. (2.17)) we get

∫

(x)

x(a) = C−1
e,a = δe,a . (3.116)

Therefore we are allowed to expand a function on the group (|f〉a = f(a)) as

f(a) =

∫

(x)

x(a−1)〈x|f〉 (3.117)

with 〈x|f〉 =
∑

b∈G x(b)f(b). It is also possible to define a scalar product
among functions on the group. Defining, 〈f |a = f̄(a), where f̄(a) is the com-
plex conjugated of f(a), we put

〈f |g〉 =
∫

(x)

〈f |Cx〉〈x|g〉 =
∫

(x)

f̄(x∗)g(x) =
∑

a∈G

f̄(a)g(a) . (3.118)

It is important to stress that this definition depends only on the algebraic
properties of A(G) and not on the specific representation chosen for this con-
struction.
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3.7 What is the meaning of the algebraic integration?

As we have said in the previous Section, the integration formula we have ob-
tained is independent on the group representation we started with. In fact, it
is based only on the structure of right and left multiplications, that is on the
abstract algebraic product. This independence on the representation suggests
that in some way we are ”summing” over all the representations. To under-
stand this point, we will study in this Section vector representations. To do
that, let us introduce a label λ for the vector representation we are actually
using to define A(G). Then a generic function on A(G)λ

f̂(λ) =
∑

a∈G

f(a)xλ(a) (3.119)

can be thought as the Fourier transform of the function f : G→ |C. Using the
algebraic integration we can invert this expression (see Eq. (3.117))

f(a) =

∫

(xλ)

f̂(λ)xλ(a
−1) . (3.120)

But it is a well known result of the harmonic analysis over the groups, that
in many cases it is possible to invert the Fourier transform, by an appropriate
sum over the representations. This is true in particular for finite and compact
groups. Therefore the algebraic integration should be the same thing as sum-
ming or integrating over the labels λ specifying the representation. In order to
show that this is the case, let us recall a few facts about the Fourier transform
over the groups.12 First of all, given the group G, one defines the set Ĝ of the
equivalence classes of the irreducible representations of G. Then, at each point
λ in Ĝ we choose a unitary representation xλ belonging to the class λ, and
define the Fourier transform of the function f : G→ |C, by the Eq. (3.119). In
the case of compact groups, instead of the sum over the group element one has
to integrate over the group by means of the invariant Haar measure. For finite
groups, the inversion formula is given by

f(a) =
1

nG

∑

λ∈Ĝ

dλtr[f̂(λ)xλ(a
−1)] , (3.121)

where nG is the order of the group and dλ the dimension of the representation
λ. Therefore, we get the identification

∫

(x)

{· · ·} = 1

nG

∑

λ∈Ĝ

dλtr[{· · ·}] . (3.122)
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A more interesting way of deriving this relation, is to take in (3.119), f(a) =

δe,a, obtaining for its Fourier transform, δ̂ = xλ(e) = 1λ, where the last symbol
means the identity in the representation λ. By inserting this result into (3.121)
we get the identity

δe,a =
1

nG

∑

λ∈Ĝ

dλtr[x̂λ(a
−1)] (3.123)

which, compared with Eq. (3.116), gives (3.122). This shows explicitly that the
algebraic integration for vector representations of G is nothing but the sum
over the representations of G.

An analogous relation is obtained in the case of compact groups. This can
also be obtained by a limiting procedure from finite groups, if we insert 1/nG,
the volume of the group, in the definition of the Fourier transform. That is
one defines

f̂(λ) =
1

nG

∑

a∈G

f(a)xλ(a) (3.124)

from which
f(a) =

∑

λ∈Ĝ

dλtr[f̂(λ)xλ(a
−1)] . (3.125)

Then one can go to the limit by substituting the sum over the group elements
with the Haar measure

f̂(λ) =

∫

G

dµ(a)f(a)xλ(a) . (3.126)

The inversion formula (3.125) remains unchanged. We see that in these cases
the algebraic integration sums over the elements of the space Ĝ, and therefore
it can be thought as the dual of the sum over the group elements (or the Haar
integration for compact groups). By using the Fourier transform (3.119) and
its inversion (3.120), one can easily establish the Plancherel formula. In fact
by multiplying together two Fourier transforms, one gets

f̂1(λ)f̂2(λ) =
∑

a∈G

(

∑

b∈G

f1(b)f2(b
−1a)

)

xλ(a) (3.127)

from which
∫

(x)

f̂1(λ)f̂2(λ)xλ(a
−1) =

∑

b∈G

f1(b)f2(b
−1a) (3.128)

and taking a = e we obtain
∫

(x)

f̂1(λ)f̂2(λ) =
∑

b∈G

f1(b)f2(b
−1) . (3.129)
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This formula can be further specialized, by taking f2 ≡ f and for f1 the
involuted of f . That is

f̂∗(λ) =
∑

a∈G

f̄(a)xλ(a
−1) , (3.130)

where use has been made of Eq. (3.115). Then, from Eq. (3.129) we get the
Plancherel formula

∫

(x)

f̂∗(λ)f̂(λ) =
∑

a∈G

f̄(a)f(a) . (3.131)

Let us also notice that Eq. (3.127) says that the Fourier transform of the con-
volution of two functions on the group is the product of the Fourier transforms.

We will consider now projective representations. In this case, the product
of two Fourier transforms is given by

f̂1(λ)f̂2(λ) =
∑

a∈G

h(a)xλ(a) (3.132)

with
h(a) =

∑

b∈G

f1(b)f2(b
−1a)eiα(b,b−1a) . (3.133)

Therefore, for projective representations, the convolution product is deformed
due to the presence of the phase factor. However, the Plancherel formula still
holds. In fact, since in

h(e) =
∑

b∈G

f1(b)f2(b
−1) (3.134)

using Eq. (2.15), the phase factor disappears and the previous derivation from
Eq. (3.129) to Eq. (3.131) is still valid. Notice that Eq. (3.132) tells us that the
Fourier transform of the deformed convolution product of two functions on the
group, is equal to the product of the Fourier transforms.

3.8 The case of abelian groups

In this Section we consider the case of abelian groups, and we compare the
Fourier analysis made in our framework with the more conventional one made
in terms of the characters. A fundamental property of the abelian groups is
that the set Ĝ of their vector unitary irreducible representations (VUIR), is
itself an abelian group, the dual of G (in the sense of Pontryagin12). Since the
VUIR’s are one-dimensional, they are given by the characters of the group.
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Table 1: Parameterization of the abelian group G and of its dual Ĝ, for
G = RD, ZD, TD, ZDn .

G = RD G = ZD G = TD G = ZDN
Ĝ = RD Ĝ = TD Ĝ = ZD Ĝ = ZDN

~a −∞ ≤ ai ≤ +∞ ai =
2πmi

L
0 ≤ ai ≤ L ai = ki,

mi ∈ Z 0 ≤ ki ≤ n− 1

~q −∞ ≤ qi ≤ +∞ 0 ≤ qi ≤ L qi =
2πmi

L
qi =

2π`i
N

mi ∈ Z 0 ≤ `i ≤ n− 1

We will denote the characters of G by χλ(a), where a ∈ G, and λ denotes
the representation of G. For what we said before, the parameters λ can be
thought as the elements of the dual group. The parameterization of the group
element a and of the representation label λ are given in Table 1, for the most
important abelian groups and for their dual groups, where we have used the
notation a = ~a and λ = ~q.

The characters are given by

χλ(a) ≡ χ~q (~a) = e−i~q·~a (3.135)

and satisfy the relation (here we use the additive notation for the group oper-
ation)

χλ(a+ b) = χλ(a)χλ(b) , (3.136)

and the dual
χλ1+λ2

(a) = χλ1
(a)χλ2

(a) . (3.137)

That is they define vector representations of the abelian group G and of its
dual, Ĝ. Also we can easily check that the operators

D~qχ~q (~a) = −i~aχ~q (~a) . (3.138)

are derivations on the algebra (3.136) of the characters for any G in Table 1.
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We can use the characters to define the Fourier transform of the function
f(g) : G→ |C

f̃(λ) =
∑

a∈G

f(a)χλ(a) . (3.139)

If we evaluate the Fourier transform of the deformed convolution of Eq. (3.133),
we get

h̃(λ) =
∑

a∈G

h(a)χλ(a) =
∑

a,b∈G

f(a)χλ(a)e
iα(a,b)g(b)χλ(b) . (3.140)

In the case of vector representations the Fourier transform of the convolution is
the product of the Fourier transforms. In the case of projective representations,
the result, using the derivation introduced before, can be written in terms of
the Moyal product (we omit here the vector signs)

h̃(λ) = f̃(λ) ? g̃(λ) = e−iα(Dλ′ ,Dλ′′ )f̃(λ′)g̃(λ′′)
∣

∣

∣

λ′=λ′′=λ
. (3.141)

Therefore, the Moyal product arises in a very natural way from the projective
group algebra. On the other hand, we have shown in the previous Section,
that the use of the Fourier analysis in terms of the projective representations
avoids the Moyal product. The projective representations of abelian groups
allow a derivation on the algebra, analogous to the one in Eq. (3.138), with
very special features. In fact we check easily that

~Dxλ(~a) = −i~axλ(~a) (3.142)

is a derivation, and furthermore
∫

(xλ)

~Dxλ(~a) = 0 . (3.143)

From this it follows, by linearity, that the integral of ~D applied to any function
on the algebra is zero

∫

(xλ)

~D

(

∑

a∈G

f(~a)xλ(~a)

)

= 0 . (3.144)

This relation is very important because, as we have shown in Ref. 13 the au-
tomorphisms generated by ~D, that is exp(~α · ~D), leave invariant the integral.
Notice that this derivation generalizes the derivative with respect to the pa-
rameter ~q, although this has no meaning in the present case. In the case of
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nonabelian groups, a derivation sharing the previous properties can be defined
only if there exists a mapping σ : G→ |C, such that

σ(ab) = σ(a) + σ(b), a, b ∈ G , (3.145)

since in this case, defining

Dx(a) = σ(a)x(a) (3.146)

we get

D(x(a)x(b)) = σ(ab)x(a)x(b) = (σ(a) + σ(b))x(a)x(b)

= (Dx(a))x(b) + x(a)(Dx(b)) . (3.147)

Having defined derivations and integrals one has all the elements for the
harmonic analysis on the projective representations of an abelian group.

Let us start considering G = RD. In the case of vector representations we
have

x~q (~a) = e−i~q·~a (3.148)

with ~a ∈ G, and ~q ∈ Ĝ = RD labels the representation. The Fourier transform
is

f̂(~q) =

∫

dD~af(~a)e−i~q·~a . (3.149)

Here the Haar measure for G coincides with the ordinary Lebesgue measure.
Also, since Ĝ = RD, we can invert the Fourier transform by using the Haar
measure on the dual group, that is, again the Lebesgue measure. In the pro-
jective case, Eq. (3.148) still holds true, if we assume ~q as a vector operator
satisfying the commutation relations

[qi, qj ] = iηij (3.150)

with ηij numbers which can be related to the cocycle, by using the Baker-
Campbell-Hausdorff formula

e−i~q·~ae−i~q·
~b = e−iηijaibj/2e−i~q·(~a+

~b) (3.151)

giving

α(~a,~b) = −1

2
ηijaibj . (3.152)

The inversion of the Fourier transform can now be obtained by our formulation
of the algebraic integration in the form

f(~a) =

∫

(~q)

f̂(~q)x~q (−~a) , (3.153)
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where the dependence on the representation is expressed in terms of ~q, thought
now they are not coordinates on Ĝ. We recall that in this case, Eq. (3.116)
gives

∫

(~q)

x~q (~a) = δD(~a) . (3.154)

Therefore, the relation between the algebraic integration and the Lebesgue
integral in Ĝ, in the vector case is

∫

(~q)

=

∫

dD~q

(2π)D
. (3.155)

In the projective case the right hand side of this relation has no meaning,
whereas the left hand side is still well defined. Also, we cannot maintain the
interpretation of the qi’s as coordinates on the dual space Ĝ. However, we
can define elements of A(G) having the properties of the qi’s (in particular
satisfying Eq. (3.150)), by using the Fourier analysis. That is we define

qi =

∫

dD~a

(

−i ∂
∂ai

δD(~a)

)

x~q (~a) (3.156)

which is an element of A(G) obtained by Fourier transforming a distribution
over G, which is a honestly defined space. From this definition we can easily
evaluate the product

qix~q (~a) =

∫

dD~b

(

−i ∂
∂bi

δD(~b)

)

x~q (~b)x~q (~a) . (3.157)

Using the algebra and integrating by parts, one gets the result

qix~q (~a) = i∇ix~q (~a) , (3.158)

where

∇i =
∂

∂ai
+ iαijaj (3.159)

where αij = α(~e(i), ~e(j)), with ~e(i) an orthonormal basis in RD. In a completely
analogous way one finds

x~q (~a)qi = i∇ix~q (~a) , (3.160)

where

∇i =
∂

∂ai
− iαijaj . (3.161)
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Then, we evaluate the commutator

[qi, f̂(~q)] =

∫

dD~a
[

−i
(

∇i −∇i

)

f(~a)
]

x~q(~a) , (3.162)

where we have done an integration by parts. We get

[qi, f̂(~q)] = −2iαijDqj f̂(~q) , (3.163)

where Dqj is the derivation (3.142), with qj a reminder for the direction along
which the derivation acts upon. In particular, from

Dqjqi =

∫

dD~a

(

−i ∂
∂ai

δD(~a)

)

(−iaj)x~q(~a) = δij (3.164)

we get

[qi, qj ] = −2iαij (3.165)

in agreement with Eq. (3.150), after the identification αij = −ηij/2.
The automorphisms induced by the derivations (3.142) are easily evaluated

S(~α)x~q (~a) = e~α·D~qx~q (~a) = e−i~α·~ax~q (~a) = x~q+~α(~a) , (3.166)

where the last equality follows from

∫

dD~a

(

−i ∂
∂ai

δD(~a)

)

e~α·D~qx~q (~a) = qi + αi . (3.167)

Meaning that in the vector case, S(~α) induces translations in Ĝ. Since D~q

satisfies the Eq. (3.144), it follows from Section 2.4 (see also13) that the auto-
morphism S(~α) leaves invariant the algebraic integration measure

∫

(~q)

=

∫

(~q+~α)

. (3.168)

This shows that it is possible to construct a calculus completely analogous to
the one that we have on Ĝ in the vector case, just using the Fourier analysis
following by the algebraic definition of the integral. We can push this analysis
a little bit further by looking at the following expression

∫

(~q)

f̂(~q) qi x~q (−~a) = −i
(

∂

∂ai
+ iαijaj

)

f(~a) , (3.169)
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where we have used Eq. (3.158). In the case D = 2 this equation has a physical
interpretation in terms of a particle of charge e, in a constant magnetic field
B. In fact, the commutators among canonical momenta are

[πi, πj ] = ieBεij , (3.170)

where εij is the 2-dimensional Ricci tensor. Therefore, identifying πi with qi,
we get αij = −eBεij/2. The corresponding vector potential is given by

Ai(~a) = −
1

2
εijBaj =

1

e
αijaj . (3.171)

Then, Eq. (3.169) tells us that the operation f̂(~q) → f̂(~q)qi, corresponds to
take the covariant derivative

−i ∂
∂ai

+ eAi(~a) (3.172)

of the inverse Fourier transform of f̂(~q). An interesting remark is that a trans-

lation in ~q generated by exp(~α · ~D), gives rise to a phase transformation on
f(~a). First of all, by using the invariance of the integration measure we can
check that

f̂(~q + ~α) = e~α·
~Df̂(~q) . (3.173)

In fact
∫

(~q)

f̂(~q + ~α)x~q (−~a) =
∫

(~q−~α)

f̂(~q)x~q−~α (−~a) = e−i~α·~af(~a) . (3.174)

Then, we have

∫

(~q)

(

e~α·
~Df̂(~q)

)

x~q (−~a) =
∫

(~q)

f̂(~q)
(

e−~α·
~Dx~q(−~a)

)

= e−i~α·~af(~a) , (3.175)

where we have made use of Eq. (3.166). This proves Eq. (3.173), and at the
same time our assertion. From Eq. (3.169), this is equivalent to a gauge trans-
formation on the gauge potential Ai = αijaj , Ai → Ai − ∂iΛ, with Λ = ~α · ~a.
Therefore, we see here explicitly the content of a projective representation in
the basis of the functions on the group. One starts assigning the two-form αij .
Given that, one makes a choice for the vector potential. For instance in the
previous analysis we have chosen αijaj . Any possible projective representation
corresponds to a different choice of the gauge. In the dual Fourier basis this
corresponds to assign a fixed set of operators qi, with commutation relations
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determined by a two-form. All the possible projective representations are ob-
tained by translating the operators qi’s. Of course, this is equivalent to say
that the projective representations are the central extension of the vector ones,
and that they are determined by the cocycles. But the previous analysis shows
that the projective representations generate noncommutative spaces, and that
the algebraic integration, allowing us to define a Fourier analysis, gives the
possibility of establishing calculus rules over these spaces.

Consider now the case G = ZD. Let us introduce an orthonormal basis on
the square lattice defined by ZD, ~e(i), i = 1, · · · , D. Then, any element of the
algebra can be reconstructed in terms of a product of the elements

Ui = x(~e(i)) (3.176)

corresponding to a translation along the direction i by one lattice site. In
general we will have

x(~m) = eiθ(~m)Um1
1 · · ·UmD

D , ~m =
∑

i

mi~e(i) (3.177)

with θ a calculable phase factor. The quantities Ui play the same role of ~q of
the previous example. The Fourier transform is defined by

f̂(~U) =
∑

~m∈ZD

f(~m)x~U (~m) , (3.178)

where the dependence on the representation is expressed in terms of ~U , de-
noting the collections of the Ui’s. The inverse Fourier transform is defined
by

f(~m) =

∫

~U

f̂(~U)x~U (−~m) , (3.179)

where the integration rule is
∫

(~U)

x~U (~m) = δ~m,~0 . (3.180)

Therefore, the Fourier transform of Ui is simply δ~m,~e(i) . The algebraic integra-
tion for the vector case is

∫

(~U)

→
∫ L

0

dD~q

LD
. (3.181)

Since the set ~U is within the generators of the algebra, to establish the rules
of the calculus is a very simple matter. Eq. (3.176) is the definition of the set
~U , analogous to Eq. (3.156). In place of Eq. (3.163) we get

Uif̂(~U)U−1
i = e−2αijDj f̂(~U) . (3.182)
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Here Dj is the j-th component of the derivation ~D which acts upon Ui as

DiUj = −iδijUj . (3.183)

By choosing f̂(~U) = Uk we have

UiUkU
−1
i U−1

k = e2iαik (3.184)

which is the analogue of the commutator among the qi’s. The automorphisms
generated by ~D are

S(~φ)x~U (~m) = e
~φ·~Dx~U (~m) = e−i

~φ·~mx~U (~m) . (3.185)

From which we see that

Ui → S(~φ)Ui = e−iφiUi . (3.186)

This transformation corresponds to a trivial cocycle. As in the case G = RD

it gives rise to a phase transformation on the group functions
∫

(~U)

(

e~α·
~Df̂(~U)

)

x~U (−~m) =

∫

~U)

f̂(~U)
(

e−~α·
~Dx~U (−~m)

)

= ei
~φ·~mf(~m) .

(3.187)
Of course, all these relations could be obtained formally, by putting Ui =
exp(−iqi), with qi defined as in the case G = RD.

Finally, in the case G = ZD
n , the situation is very much alike ZD, that is

the algebra can be reconstructed in terms of a product of elements

Ui = x(~e (i)) (3.188)

satisfying
Un
i = 1 . (3.189)

Therefore we will not repeat the previous analysis but we will consider only
the case D = 2, where U1 and U2 can be expressed as14

(U1)a,b = δa,b−1+δa,nδb,1, (U2)a,b = e
2πi
n

(a−1)δa,b, a, b = 1, · · · , n . (3.190)

The elements of the algebra are reconstructed as

x~U (~m) = ei
π
n
m1m2Um1

1 Um2
2 . (3.191)

The cocycle is now

α(~m1, ~m2) = −
2π

n
εijm1im2j . (3.192)
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In this case we can compare the algebraic integration rule
∫

~U

x~U (~m) = δ~m,~0 (3.193)

with
Tr[x~U (~m)] = nδ~m,~0 . (3.194)

A generic element of the algebra is a n× n matrix

A =

n−1
∑

m1,m2=0

cm1m2
x~U (~m) (3.195)

and therefore
∫

~U

A =
1

n
Tr[A] . (3.196)

In Section 3 we have shown that the algebraic integration over the algebra of
the n× n matrices An is given by

∫

An

A = Tr[A] (3.197)

implying
∫

~U

A =
1

n

∫

An

A . (3.198)

3.9 The example of the algebra on the circle

A particular example of a group algebra is the algebra on the circle defined by

znzm = zn+m, −∞ ≤ n,m ≤ +∞ (3.199)

with z restricted to the unit circle.

z∗ = z−1 . (3.200)

This is a group algebra over ZZ. Defining the ket

|z〉 =























·
z−i

·
1
z
·
zi

·























(3.201)
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the Ri and Li matrices are given by

(Ri)jk = δi+j,k, (Li)jk = δi+k,j (3.202)

and from our previous construction, the matrix C is given by

(C)ij = (C−1)ij = δi+j,0 , (3.203)

or, more explicitly by

C =











· · · · ·
· 0 0 1 ·
· 0 1 0 ·
· 1 0 0 ·
· · · · ·











(3.204)

showing that

C : zi → z−i . (3.205)

In fact

(C−1LiC)lp = δl,−mδi+n,mδn,−p = δi−p,−l = δi+l,p = (Ri)lp . (3.206)

In this case the C matrix is nothing but the complex conjugation (z → z∗ =
z−1). The completeness relation reads now

∫

(z)

ziz−j = δij (3.207)

from which
∫

(z)

zk = δk0 . (3.208)

Our algebraic definition of integral can be interpreted as an integral along a
circle C around the origin. In fact we have

∫

(z)

=
1

2πi

∫

C

dz

z
. (3.209)

4 Associative non self-conjugated algebras: the q-oscillator

A generalization of the bosonic oscillator is the q-bosonic oscillator.15 We will
use the definition given in16

bb̄− qb̄b = 1 (4.1)
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with q real and positive. We assume as elements of the algebraA, the quantities

xi =
zi
√

iq!
, (4.2)

where z is a complex number,

iq =
qi − 1

q − 1
(4.3)

and
iq! = iq(i− 1)q · · · 1 . (4.4)

The structure constants are

fijk = δi+j,k

√

kq!

iq!jq!
(4.5)

and therefore

(Ri)jk = δi+j,k

√

kq!

iq!jq!
, (Li)jk = δi+k,j

√

jq!

iq!kq!
. (4.6)

In particular

(R1)jk = δj+1,k

√

kq, (L1)jk = δj−1,k

√

(k + 1)q . (4.7)

We see that R1 and L1 satisfy the q-bosonic algebra

R1L1 − qL1R1 = 1 . (4.8)

This equation shows that the right- and left-representations are not equivalent
for q 6= −1 (the Fermi oscillator case). Therefore no C matrix exists and,
according to our rules of Section 2.2, we require

∫

(z,z∗)q

ziz∗j

iq!jq!
= δij . (4.9)

In the case q = 1 the integration coincides with the standard integration over
complex numbers as used for coherent states8

∫

(z,z∗)1

=

∫

dz dz∗

2πi
e−|z|2 . (4.10)
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The integration for the q-oscillator can be expressed in terms of the so
called q-integral (see Ref. 17), by using the representation of nq! as a q-integral

nq! =

∫ 1/(1−q)

0

dqt e
−qt
1/q t

n , (4.11)

where the q-exponential is defined by

etq =

∞
∑

n=0

zn

nq!
(4.12)

and the q-integral through

∫ a

0

dqtf(t) = a(1− q)
∞
∑

n=0

f(aqn)qn . (4.13)

Then the two integrations are related by (z = |z| exp(iφ))
∫

(z,z∗)q

=

∫

dφ

2π

∫

dq(|z|2) e−q|z|
2

1/q . (4.14)

The Jackson integral is the inverse of the q-derivative

(Dqf)(x) =
f(x)− f(qx)

(1− q)x . (4.15)

In fact, for

F (a) =

∫ a

0

dqtf(t) = a(1− q)
∞
∑

n=0

f(aqn)qn (4.16)

one has

(DqF )(a) = f(a) (4.17)

as can be checked using

F (qa)=qa(1−q)
∞
∑

n=0

f(aqn+1)qn=a(1−q)
∞
∑

n=1

f(aqn)qn=F (a)−a(1−q)f(a) .

(4.18)

The limit q → 1 defines the rules for the integration in the case of the
normal bosonic oscillator.
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5 Non-associative self-conjugated algebras: the octonions

We will discuss now how to integrate over the non-associative algebra of oc-
tonions (see Ref. 18). This algebra (said also a Cayley algebra) is defined in
terms of the multiplication table of its seven imaginary units eA

eAeB = −δAB + aABCeC , A,B,C = 1, · · · , 7 , (5.1)

where aABC is completely antisymmetric and equal to +1 for (ABC) =
(1, 2, 3), (2,4,6), (4,3,5), (3,6,7), (6,5,1), (5,7,2) and (7,1,4). The automor-
phism group of the algebra is G2. We define the split basis as

u0 =
1

2
(1 + ie7), u∗0 =

1

2
(1− ie7)

ui =
1

2
(ei + iei+3), u∗i =

1

2
(ei − iei+3) , (5.2)

where i = 1, 2, 3. In this basis the multiplication rules are given in Table 2 and
automorphism group is SU(3).

Table 2: Multiplication table for the octonionic algebra.

u0 u∗0 uj u∗j
u0 u0 0 uj 0
u∗0 0 u∗0 0 u∗j
ui 0 ui εijku

∗
k −δiju0

u∗i u∗i 0 −δiju∗0 εijkuk

The non-associativity can be checked by taking, for instance,

ui(uju
∗
k) = ui(−δjku0) = 0 (5.3)

and comparing with

(uiuj)u
∗
k = εijmu

∗
mu

∗
k = −εijkεkmnun . (5.4)

From the ket

|u〉 =







u0

u∗0
ui
u∗i






(5.5)

one can easily evaluate the matrices R and L corresponding to right and left
multiplication. We will not give here the explicit expressions, but one can
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easily see some properties. For instance, one can evaluate the anticommutator
[Ri, R

∗
j ]+, by using the following relation

[Ri, R
∗
j ]+|u〉 = Ri|u〉u∗j +R∗

j |u〉ui = (|u〉ui)u∗j + (|u〉u∗j )ui . (5.6)

The algebra of the anticommutators of Ri, R
∗
i turns out to be the algebra of

three Fermi oscillators (apart from the sign)

[Ri, R
∗
j ]+ = −δij , [Ri, Rj ]+ = 0, [R∗

i , R
∗
j ]+ = 0 . (5.7)

The matrices R0 and R∗
0 define orthogonal projectors

R2
0 = R0, (R∗

0)
2 = R∗

0, R0R
∗
0 = R∗

0R0 = 0 . (5.8)

Further properties are
R0 +R∗

0 = 1 (5.9)

and
R∗
i = −RT

i . (5.10)

Similar properties hold for the left multiplication matrices. This algebra is
self-conjugated with the C matrix given by

C =







1 0 0 0
0 1 0 0
0 0 0 −13

0 0 −13 0






, (5.11)

where 13 is the 3× 3 identity matrix. We have CT = C. The integration rules
are easily obtained by looking at the following external product

C|u〉〈u| =







u0

u∗0
−u∗i
−ui







(

u0, u
∗
0, uj , u

∗
j

)

=







u0 0 uj 0
0 u∗0 0 u∗j
−u∗i 0 δiju

∗
0 −εijkuk

0 −ui −εijku∗k δiju0






. (5.12)

Therefore we get
∫

(u)

u0 =

∫

(u)

u∗0 = 1,

∫

(u)

ui =

∫

(u)

u∗i = 0 . (5.13)
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