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and presented by the authors in various talks during the last year. We discuss
the type II D-branes (both regular and fractional) of the orbifold R1,5⊗R4/Z2,
we determine their corresponding supergravity solution and show how this can
be used to study the properties of N= 2 super Yang-Mills. Supergravity is able
to reproduce the perturbative moduli space of the gauge theory, while it does
not encode the non-perturbative corrections. The short distance region of space-
time, which corresponds to the infrared region of the gauge theory, is excised by
an enhançon mechanism, and more states should be included in the low energy
effective action in order to enter inside the enhançon and recover the instanton
corrections.
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1 Introduction

Since the observation made by ’t Hooft3 of studying QCD by using the large N
expansion it has been a dream of many particle physicists to use it for study-
ing with analytical methods the non-perturbative properties of QCD as for
instance confinement and chiral symmetry breaking. Moreover, since the large
N expansion is an expansion in the topology of the diagrams as string theory,
it has been a long standing hope to get a string theory for hadrons coming out
in the non-perturbative analysis of QCD. This has crashed, however, with the
fact that all known string theories contain gravity, while QCD is a theory in
flat Minkowski space.

The Maldacena conjecture4 provides for the first time a strong evidence
that a string theory comes out from a gauge theory. It states that four-
dimensional N = 4 super Yang-Mills in flat space is equivalent to type IIB
string theory compactified on AdS5×S5 and, since the two theories live in two
completely different spaces, one does not run in the contradiction mentioned
above. On the other hand one expects that the emergence of a string theory
be related to confinement, while N =4 super Yang-Mills is a conformal invari-
ant theory in a Coulomb phase and therefore does not confine. Nevertheless,
by means of the Maldacena conjecture one has been able to obtain nontrivial
informations5−8 on the strong coupling behaviour of N =4 super Yang-Mills.

In the last few years many attempts have been made to use brane dynamics
for studying more realistic gauge theories. In particular, the next in order of
difficulty, namely N =2 super Yang-Mills (analyzed also at a non-perturbative
level by Seiberg and Witten9) has been studied in terms of classical solutions of
the supergravity equations of motion corresponding to wrapped branes1,2,10−13

of various type.a

One of these approaches1,10 is based on using fractional D3-branes16−19

of the orbifold R1,5⊗R4/Z2 . In this case the corresponding complete clas-
sical solution of the equations of motion of type IIB supergravity has been
obtained and has been used in a probe analysis for deriving the moduli space
of N = 2 super Yang-Mills that is known from Ref. 9. Although the classical
solution has a naked singularity at short distances, it turns out that this does
not cause any problem because there is a distance, known as the enhançon,21

which is bigger than the one where the singularity arises, where brane probes
become tensionless and where, correspondingly, the classical supergravity so-
lution looses meaning and the singularity is excised. From the point of view
of the gauge theory living on the world-volume of fractional D3-branes, the
enhançon corresponds to the scale where the gauge coupling constant diverges

a For other earlier approaches see Refs. 14 and 15.
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(the analogue of ΛQCD in QCD). This means that using supergravity one can
indeed reproduce the perturbative region of the moduli space, obtaining, for
instance, the correct β-function. But, since at the enhançon the classical solu-
tion becomes inconsistent, it is not possible to go further and use it for getting
the non-perturbative instanton corrections of the Seiberg-Witten moduli space.

Another approach12,13 is based on D5-branes wrapped on supersymmet-
ric two-cycles of non compact four dimensional Calabi-Yau manifold, as ALE
spaces.b The classical solution is obtained by lifting to ten dimensions a so-
lution found in 7-dimensional gauged supergravity. Although this approach
is meant to give directly the near-horizon limit of the brane, providing the
supergravity dual à la Maldacena, it turns out that it, as the one based on
fractional branes, is again only able to reproduce the perturbative behaviour
of the gauge theory living on the brane, since the enhançon locus is present
also in these cases.

The previous results, that seem to be in strong contrast with a duality
interpretation à la Maldacena where the supergravity solution gives a good
description of the gauge theory for large ’t Hooft coupling, can instead be easily
understood if we regard the classical supergravity solution as an effective way
of summing over all open string loops, as explained in detail in Ref. 20. From
this point of view, in fact, one does not take the near-horizon limit (i.e. r→0,
where r is the distance from the source branes) that anyway cannot be taken
because of the enhançon, but rather expands the classical solution around
r→∞, where the metric is almost flat and the supergravity approximation
is valid. This expansion corresponds to summing closed string diagrams at
tree level, but, because of the open/closed string duality, it is also equivalent
to summing over open string loops. Therefore, expanding the supergravity
solution around r → ∞ is equivalent to perform an expansion for small ’t
Hooft coupling.

In view of these considerations, it is then not surprising that the super-
gravity solutions corresponding to fractional and wrapped branes encode the
perturbative properties of the N =2 gauge theory living on their world-volume,
and at the same time it is also natural that this approach does not include the
non-perturbative instanton corrections to the moduli space. The open and
fascinating problem is then how to obtain them from the brane dynamics.

This is a pedagogical and extended version of the results published in
Refs. 1 and 2 in collaboration with Marialuisa Frau, Alberto Lerda and Igor
Pesando. We have written it for commemorating Michael Marinov. One of us
(PdV) has met him few times in Soviet Union during the Meetings organized
by Nordita that allowed the physicists from the Soviet Union and those from

b A different approach based on wrapped branes is discussed in Refs. 22 and 23.
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the Western Countries to meet and discuss in an extremely friendly and relaxed
atmosphere in the time of the cold war where many people as Michael suffered
of its consequences. After his migration to Israel he visited Nordita a couple
of times expressing his happiness for his new life there, but also his sadness for
missing the life in Moscow.

The paper is organized as follows. In Sections 2 and 3 we discuss in
great detail, respectively, the spectrum of massless closed string states and
that of massless open string states having their endpoints on fractional and
bulk D3-branes of the orbifold R1,5 ⊗ R4/Z2. Section 4 is devoted to the
construction of the boundary state describing fractional Dp-branes and to its
use to compute their boundary action and the large distance behaviour of
the corresponding classical solution. In Section 5 we show that fractional
branes can be thought of as wrapped branes on vanishing exceptional two-
cycles of the corresponding orbifold. Sections 6 and 7 are devoted to study the
constraints imposed by supersymmetry on the classical supergravity solution
corresponding to the fractional D3-branes, and to the derivation of the solution
itself. Finally, in the last section, by probing the supergravity background
that we have obtained, with suitable fractional D-brane probes, we derive the
properties of the gauge theory living on bulk and fractional branes.

2 Massless closed string states in orbifold R1,5⊗R4/Z2

Let us consider type II string theory on the orbifold R1,5⊗R4/Z2 where Z2

acts on the four directions x6, x7, x8, x9 by changing their sign:

{x6, x7, x8, x9} → {−x6,−x7,−x8,−x9} . (1)

In this section we study the spectrum of the closed string states of both type
IIA and IIB theories.

We analyze the spectrum of closed strings in the light-cone gauge where
the classification group is SO(8) that is obtained from the original SO(1, 9) by
dropping the string coordinates x0 and x1. In the case of the orbifold R4/Z2

this group is broken to

SO(8)→ SO(4)× SO(4)INT , (2)

where the orbifold group Z2 acts on SO(4)INT . Let us remember that in an
orbifold we have both untwisted and twisted sectors. The former corresponds
to the identity of the orbifold group, and consists of the subset of the states
already present in flat space, which are even under the orbifold group. The
number of twisted sectors, instead, depends on the orbifold under consideration
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and is equal to the number of non-trivial elements of the discrete orbifold group.
In our case, where the orbifold group is Z2, there is only one twisted sector.

Let us start looking at the spectrum of the NS-NS sector, that is the same
for both type IIA and type IIB. The massless states of this sector are given by

ψM−1/2 ψ̃
N
−1/2 |0, k〉 , (3)

where M and N are indices of SO(8) taking the values M,N = 2, 3 . . . 9.
According to the breaking in Eq. (2) we writeM=(a,m) and N=(b, n) , where
a, b=2, 3, 4, 5 are indices of the space-time SO(4) , while m,n=6, 7, 8, 9 are
indices of SO(4)INT .

Since the orbifold acts on the fermionic coordinate ψ in the same way
as on the bosonic ones, according to Eq. (1), in order to preserve world-sheet
supersymmetry, it is easy to see that the only states that are even under Z2

and that therefore survive the orbifold projection are the following:

ψa−1/2 ψ̃
b
−1/2 |0, k〉 and ψm−1/2 ψ̃

n
−1/2 |0, k〉 . (4)

Since both ψa
−1/2 and ψ̃b

−1/2 transform as the vector (2, 2) representation of

SO(4) and as the singlet (1, 1) of SO(4)INT , while both ψm
−1/2 and ψ̃n

−1/2

transform as the singlet (1, 1) of SO(4) and as the vector representation (2, 2)
of SO(4)INT , it is easy to see that the first state in Eq. (4) transforms as

((2, 2), (1, 1)) ⊗ ((2, 2), (1, 1)) = ((3 + 1, 3 + 1), (1, 1)) =

= (3, 3) + (1, 3) + (3, 1) + (1, 1), (1, 1) (5)

corresponding to a graviton represented by (3, 3), to a 2-form potential repre-
sented by (3, 1) + (1, 3) and to a dilaton represented by the singlet (1, 1). All
these fields are singlets of SO(4)INT . Since SO(4) = SU(2)L×SU(2)R, in the
previous formulæ we have labelled a representation of SO(4) with (p, q) where
p [q] is the dimension of the representation of SU(2)L[SU(2)R] . Analogously,
it can be seen that the second state in Eq. (4) contains only 16 scalars (singlet
with respect to the first SO(4) ) that transform according to the representa-
tions (3, 3) + (3, 1) + (1, 3) + (1, 1) of SO(4)INT . In conclusion, the untwisted
NS-NS sector of both type IIA and IIB theories contains a graviton, a dilaton,
a two-form potential and 16 scalars.

Let us consider now the untwisted R-R sector. In the light-cone gauge
we can limit ourselves to the Dirac matrices of SO(8) that satisfy the Clifford
algebra:

{ψM0 , ψN0 } = δMN , M,N= 2, 3 . . . 9 . (6)
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It is convenient to introduce the raising and lowering operators

d±i =
1√
2

[
ψ2i
0 ± iψ2i+1

0

]
, i = 1, 2, 3, 4 , (7)

satisfying the algebra:
{d+i , d−j } = δij . (8)

For each i we have two states denoted by |si〉 with si = ± 1
2 that are eigenstates

of the number operator Ni:

Ni ≡ − i ψ2i
0 ψ

2i+1
0 = d+i d

−
i − 1/2 , Ni|si〉 = si|si〉 . (9)

A spinor of SO(8) can then be represented by the 16 states

|s1, s2, s3, s4〉 . (10)

The chirality operator Γ of SO(8) is given by the product of all Gamma ma-
trices:

Γ= 24N1N2N3N4 , Γ 2= 1 . (11)

The 8 states with chirality equal to Γ = +1(−1) are characterized by the fact
that:

4∑

i=1

Ni = even (odd) (12)

It is important to notice that the space-time SO(4) acts only on the indices
i = 1, 2 , while SO(4)INT acts on the remaining indices i = 3, 4 . If we now
limit ourselves only to one of the two SO(4) and we use the convention where
(1, 2) [(2, 1)] corresponds to the eigenvalue (+1)[(−1)] of the Γ̂ matrix of the
group SO(4) (for instance, Γ̂ ≡ −Γ2Γ3Γ4Γ5 = 4N1N2 in the case of space-time
SO(4)), it is easy to see that its two spinor representations correspond to the
following states:

(1, 2) ∼
(
1

2
,
1

2

)
+

(
−1

2
,−1

2

)
, (13)

(2, 1) ∼
(
1

2
,−1

2

)
+

(
−1

2
,
1

2

)
. (14)

This implies that the 8 states with chirality +1 and −1 are given respectively
by

8s=((1, 2), (1, 2))+((2, 1), (2, 1)) and 8c=((1, 2), (2, 1))+((2, 1), (1, 2)) . (15)
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The orbifold group Z2 acts on the spinor in Eq. (10) as follows:

|s1, s2, s3, s4〉 → eiπ(s3+s4)|s1, s2, s3, s4〉 . (16)

This implies that Z2 acts on the two spinors of SO(4)INT as

(1, 2)→ −(1, 2) , (2, 1)→ (2, 1) . (17)

and the spinors 8s and 8c are transformed under the orbifold action as

8s → − ((1, 2), (1, 2)) + ((2, 1), (2, 1))

and 8c → ((1, 2), (2, 1))− ((2, 1), (1, 2)) , (18)

respectively. We are now ready to study the spectrum of the untwisted R-R
sector. Let us start with the type IIA theory that contains two spinors with
opposite chirality. This means that we should consider the product 8s × 8c,
where 8s and 8c correspond respectively to the left and right movers, and keep
only the states that are even under the orbifold group Z2. In this case the
states that survive the orbifold projections are the following:

((2, 1), (2, 1))× ((1, 2), (2, 1)) + ((1, 2), (1, 2))× ((2, 1), (1, 2))

= ((2, 2), (3 + 1, 1)) + ((2, 2), (1, 3 + 1)) . (19)

They correspond to 8 vectors of the space-time SO(4). In conclusion, the
untwisted R-R sector of type IIA contains 8 vector fields. Considering now
type IIB, we should take the product of two spinors with the same chirality.
The states that are even under the orbifold projections are:

((2, 1), (2, 1))× ((2, 1), (2, 1)) + ((1, 2), (1, 2))× ((1, 2), (1, 2))

= ((3 + 1, 1), (3 + 1, 1)) + ((1, 3 + 1), (1, 3 + 1)) , (20)

corresponding to 4 two-form potential and 8 scalars.
The previous spectra for the untwisted R-R sectors can also be obtained

by restricting ourselves to the states appearing in type II theories in flat space
that are even under the orbifold projection. For instance in type IIA theory
in flat space we have two R-R fields CM and CMNP . The even ones under the
orbifold projection are Ca, Cabc, and Camn, where (according to the notation
explained at the beginning of this section) a, b, c are indices outside of the
orbifold and m, n are those along the orbifold. The previous states correspond
in the six-dimensional space outside the orbifold to 7 vectors and a 3-form
potential that in six dimensions is dual to a vector. This means that we obtain
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8 vectors as with the other method used above. The same procedure can also
be applied to the case of type IIB theory containing the R-R fields C, CMN

and CMNPQ with self-dual field strength. The states surviving the orbifold
projection are C, Cab, Cmn,

1
2Cabmn and 1

2C`mnr where the factor 1/2 takes
care of the self-dual field strength. Those are precisely the states found with
the previous method.

Before moving to the twisted sectors let us consider the supersymmetric
charges that survive the orbifold projection. The ordinary type IIA has two
supercharges

Q ∼ 8s and Q̃ ∼ 8c , (21)

that transform as 8s and 8c, respectively. Because of their transformation
properties under Z2 (see Eq. (18)) the states that are even under the orbifold
projection are the following:

Q ∼ ((2, 1), (2, 1)) , Q̃ ∼ ((1, 2), (2, 1)) . (22)

This shows that the orbifold R4/Z2 keeps only one half of the supersymmetry
of flat space. Proceeding in the same way in the case of type IIB theory we
get that the supersymmetric charges surviving the orbifold projection are

Q, Q̃ ∼ ((2, 1), (2, 1)) . (23)

It is interesting to notice that the supercharges in Eqs. (22) and (23) that sur-
vive the orbifold projection all transform according to the representation (2, 1)
of SO(4)INT that is left invariant under the action of the following operator:

Γ 6 Γ 7 Γ 8 Γ 9=− 4N3N4 , ΓM ≡
√
2ψM0 . (24)

This follows trivially from the definition of the state (2, 1) given in Eq. (14).
Let us consider now the twisted sectors, starting from NS-NS fields. In this

case the massless states are spinors of SO(4)INT that we require to be even
under both the action of the orbifold group and that of the GSO operators:

PLGSO = PRGSO =
1 + Γ 6 Γ 7 Γ 8 Γ 9

2
, (25)

where L and R label, respectively, the left and right movers of the closed string.
As a consequence one gets

((1, 1), (2, 1))× ((1, 1), (2, 1)) = ((1, 1), (3 + 1, 1)) , (26)

corresponding to 4 scalars. One is a singlet of SO(4)INT , while the other three
are a triplet with respect to one of the two SU(2) groups of SO(4)INT .
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Considering now the massless states in the R-R twisted sector, in type IIA
theory we must consider the following GSO operators:

PLGSO =
1 + Γ2Γ3Γ3Γ4

2
and PRGSO =

1− Γ2Γ3Γ3Γ4

2
. (27)

that, together with the orbifold projection, select the following tensor product:

((2, 1), (1, 1))× ((1, 2), (1, 1)) = ((2, 2), (1, 1)) , (28)

that corresponds to a vector field. In the case of type IIB, instead, we have
the following tensor product:

((2, 1), (1, 1))× ((2, 1), (1, 1)) = ((3 + 1, 1), (1, 1)) , (29)

corresponding to a scalar and a self-dual two-form potential.
The orbifold we are considering has a curvature singularity at its fixed

point, corresponding to x6 = x7 = x8 = x9 = 0 . It is well known that this
singularity can be interpreted in terms of a vanishing two-cycle C1 of a smooth
ALE manifold. The twisted fields can then be understood as arising from
the p-form fields appearing in type II theories, dimensionally reduced on this
vanishing two-cycle (notice that since the volume of the cycle is zero, there
are no Kaluza-Klein states, other than the zero modes). In the NS-NS sector,
the antisymmetric two-form BMN gives rise to the scalar of the NS-NS twisted
sector that is a singlet of SO(4)INT , see Eq. (26). The other three scalars,
transforming as a triplet of SU(2), are instead geometric moduli, related to
the metric tensor. In the R-R sector, we get a vector field corresponding to
dimensional reduction of the three-form potential (C3=A1∧ω2, where ω2 is the
differential form dual to the vanishing two-cycle C1) in type IIA theory, and
in type IIB a scalar field and a two-form potential with self-dual field strength
corresponding, respectively, to the dimensional reduction of C2 = c ω2 and
C4=A2∧ω2. It is probably worth noticing that when we lift type IIA theory
to M-theory, the NS-NS scalar singlet provides an extra component to the R-R
twisted vector obtaining a vector in the 7-dimensional space orthogonal to the
orbifold.

3 Massless open string states in orbifold R1,5⊗R4/Z2

In this section we determine the spectrum of open strings ending on the D3-
branes of the orbifold R1,5⊗R4/Z2. The group Z2 consists of two generators: g
acting on the coordinates of R4 as in Eq. (1), and its square that is the identity
e. If we consider a D3-brane located at a generic point of the orbifold covering
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space, we must also include its image and consequently we have four kinds
of open strings. Two kinds corresponding to open strings having both their
end-points on the brane or on its image and two other kinds corresponding
to open strings having one endpoint on the brane and the other on its image
and vice-versa. These four kinds of open strings are described by a two by two
Chan-Paton matrix that we denote by:

λ =

(
D3-D3 D3-D3′

D3′-D3 D3′ -D3′

)
, (30)

where each entry describes one of the four kinds of open strings. A generic
open string state in the NS sector will then be described by the product of a
Chan-Paton matrix that we denote by λ and an oscillator state with a certain
momentum along the world-volume of the D3-brane. In particular, a massless
state of the NS sector will have the following form:

λψM−1/2 |0, k〉 , M= 0, 1 . . . 9 . (31)

The open string states that are allowed in an orbifold are those that are left
invariant under the action of Z2 that acts on both the oscillators and the
Chan-Paton factors. Since, in order to keep world-volume supersymmetry, Z2

acts on the fermionic coordinates in the same way as on the bosonic ones, the
oscillator part of the state in (31) transforms under g as

ψα,i
−1/2 |0, k〉 → ψα,i

−1/2 |0, k〉 , α = 0, 1, 2, 3 , i = 4, 5 (32)

and

ψm−1/2 |0, k〉 → −ψm−1/2 |0, k〉 , m = 6, . . . 9 , (33)

where we have denoted the world-volume directions of the D3-brane with α,
the four directions along the orbifold with m, and the transverse ones outside
the orbifold with i. On the other hand, the Chan-Paton factors transform
under Z2 as

λ→ γ (h)λ γ (h)−1 , γ (e) = 1l =

(
1 0
0 1

)
, γ (g) = σ1=

(
0 1
1 0

)
. (34)

The matrix γ (g) can be determined by requiring that it exchanges an open
string ending on the D3-brane with an open string ending on its image and
vice-versa. It is easy to check that the matrix σ1 in Eq. (34) satisfies this
property.
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Taking into account the action of the orbifold group on both the oscillators
and the Chan-Paton factors, one gets the following invariant states that survive
the orbifold projection:

1 + σ1
2
⊗ ψα,i

−1/2|0, k〉 ,
1− σ1

2
⊗ ψα,i

−1/2|0, k〉 , (35)

corresponding to two gauge fields living on the world-volume of the D3-
brane represented by the index α, and four real Higgs fields represented
by the index i,

and
σ3 + iσ2

2
⊗ψm−1/2|0, k〉 ,

σ3 − iσ2
2

⊗ψm−1/2|0, k〉 , m=6 , 7 , 8 , 9 , (36)

corresponding to 8 scalars. At the orbifold fixed point all these fields are
massless and are grouped together in two N =2 vector multiplets, containing
a gauge and two real Higgs fields each, and two hypermultiplets, containing 4
scalars each.

The action of Z2 on the Chan-Paton factors given in Eq. (34) corresponds
to the regular representation of Z2 defined by the relation:

[R(h)]h1h2
= δhh1,h2

. (37)

It turns out that it is a reducible representation as any non one-dimensional
representation of a discrete abelian group, as Z2 is. In order to see this directly,
it is convenient to perform a change of basis in the space of the Chan-Paton
factors λ by means of the following transformation:

λ→ A−1λA , A =
1− iσ2√

2
. (38)

In this new basis the regular representation becomes

γ (e) = 1l , γ (g) = σ3 . (39)

The massless states are given by

Aα,i1 ≡ 1 + σ3
2
⊗ ψα,i

−1/2 |0, k〉 , Aα,i2 ≡ 1− σ3
2
⊗ ψα,i

−1/2 |0, k〉 , (40)

corresponding to the two gauge fields and the four Higgs scalar of the two
vector multiplets,

and by Φm1 ≡
σ1 + iσ2

2
⊗ψm−1/2 |0, k〉 , Φm2 ≡

σ1 − iσ2
2

⊗ψm−1/2 |0, k〉 , (41)
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corresponding to the two hypermultiplets. They can be grouped together in
the 2× 2 matrix (

A1 Φ1

Φ2 A2

)
. (42)

The charge of the scalar hypermultiplets can be determined by the commuta-
tion relations between the Chan-Paton factors of the gauge vectors and those
of the scalar fields. From the commutators:
[
1 + σ3

2
,
σ1 ± iσ2

2

]
= ±σ1 ± iσ2

2
,

[
1− σ3

2
,
σ1 ± iσ2

2

]
= ∓σ1 ± iσ2

2
, (43)

one gets that Φ1 has charges (1,−1) and Φ2 has opposite charges (−1, 1) with
respect to the two gauge fields A1 and A2. Summarizing, the low energy effec-
tive theory living on N D3-branes is four-dimensional N =2 super Yang-Mills
with gauge group U(N)⊗U(N) and with two hypermultiplets transforming in
the bifundamental representation of the two gauge groups:

Φ1 ∼ (N, N̄) and Φ2 ∼ (N̄ ,N) . (44)

Such a theory is conformal invariant as it can be easily checked, since the two
β-functions are indeed vanishing. Hence the gauge theory living on a D3-brane
transforming according to the regular representation of the orbifold group, is
conformal invariant. Notice that the hypermultiplets scalars are associated
with the possibility of moving the D3-brane in the orbifold directions, while the
vector multiplet scalars are associated to displacements along the fixed plane
(x4, x5) . Bulk branes on orbifolds are then not much different from usual D-
branes in flat space. Indeed, when moving a bound state of N bulk D3-branes
from the orbifold fixed point, only the diagonal gauge group survives, and the
corresponding low energy effective theory is equivalent to the Coulomb phase
of SU(N) N =4 super Yang-Mills, as it is the case for D3-branes in flat space.

In the new basis, where the transformations of the Z2 group are given
in Eqs. (39), it is easy to see that the regular representation is reducible, im-
plying that the bulk branes transform according to a reducible representation
of the orbifold group. One could look for more elementary branes transform-
ing according to the one-dimensional irreducible representations of the orbifold
group. The group Z2 has only two irreducible representations DI (I = 1, 2)
given by

γ1(e) = 1 , γ1(g) = 1 ; (45)

and

γ2(e) = 1 , γ2(g) = −1 . (46)
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The branes transforming according to one of the two previous irreducible repre-
sentations are called fractional branes. The regular representation is of course
the direct sum of the two irreducible representations above , namely:

R = ⊕DI , I = 1, 2 . (47)

This simple mathematical formula has in fact a very interesting physical in-
terpretation which will become clear when we will discuss the closed string
interpretation of bulk and fractional branes in the next section.

Since Z2 has only two irreducible representations in this case there are only
two kinds of fractional branes. Furthermore, being the Chan-Paton factors one-
dimensional, the fractional branes have the property of living at the orbifold
fixed plane x6= x7= x8= x9= 0 , since they do not have, by construction, an
image. Let us see which is the low energy effective theory living on their world-
volume. In this case the massless open string states surviving the orbifold
projection are

ψα−1/2 |0, k〉 and ψi−1/2 |0, k〉 , (48)

corresponding in four dimensions to a gauge field and two real scalar fields
belonging to an N = 2 vector gauge multiplet. In the case of a fractional
brane the additional scalars belonging to the hypermultiplets are projected
out by the orbifold projection (this implying that fractional branes are stuck
on the orbifold fixed plane, as already noticed). In conclusion the gauge theory
living on N fractional D3-branes of the orbifold R1,5⊗R4/Z2 is pure N = 2
super Yang-Mills with U(N) gauge group, which is not conformal invariant.
Therefore fractional branes have the advantage with respect to bulk branes
that they allow for the study of non-conformal gauge theories.

The previous analysis can be extended to any orbifold of the ADE
series.24,25 For a generic orbifold of the kind R4/Γ, (Γ being a Kleinian sub-
group of SU(2)), bulk branes are defined as D-branes whose Chan-Paton fac-
tors transform under the regular representation of Γ (and hence, by construc-
tion, they have images). Fractional branes, on the other hand, are defined as
D-branes whose Chan-Paton factors transform under the irreducible represen-
tations of Γ (and do not have images). Hence, for a generic orbifold theory,
there are as many different kinds of fractional branes, as the number of dif-
ferent irreducible representations of Γ. While for abelian orbifolds (A series,
corresponding to ZN ) the dimension of the irreducible representations is one,
for non abelian orbifolds (DE series), this is not true anymore. In these cases,
the number of different fractional branes is then less than the order of Γ. The
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generalization of Eq. (47) is indeed

R = ⊕ dIDI , with

n−1∑

I=0

dI = |Γ| , I = 0, 2, . . . , n− 1 , (49)

where |Γ| is the order of the discrete group Γ, dI is the dimension of the I-
th irreducible representation and n is their number, this also being equal to
the number of different types of fractional branes. Eqs. (47) and (49) seem to
suggest that bulk branes can somehow be thought as the ’sum’ of fractional
branes. This näive idea turns out to be correct, as it will become apparent in
the next section, when discussing fractional branes from the boundary state
point of view. One can generalize the analysis of the massless open string
spectrum performed for Z2 to the case of a general orbifold group Γ and easily
see that the gauge theory living on N bulk branes corresponds to the following
group:

U(d0N)× U(d1N)× ... × U(dn−1N) , (50)

with hypermultiplets transforming in the bifundamental of any given couple
of gauge groups. Also in these more general cases, as for the Z2 orbifold,
it can be shown that the gauge theory living on bulk branes is conformal
invariant, namely that all the n β-functions are vanishing. The hypermultiplets
correspond, again, to open string stretched between a D-brane and its images
and therefore are present only in the low energy spectrum of bulk branes. On
the contrary, fractional branes, which do not have images, are described as
before by pure N=2 and are stuck at the orbifold fixed plane. They are free
to move only on the fixed plane (x4, x5), the corresponding degrees of freedom
being described by the two scalars of the N=2 vector multiplet.

All previous considerations, which we have done for D3-branes, can be
easily extended to a general bulk and fractional Dp-brane. The only essential
difference, at this level, is that the low energy effective theory living on them is
in general a p+1 dimensional gauge theory. Since we are mainly interested in
four dimensional gauge theories, we will not spend more time discussing Dp-
branes here. Nevertheless, when discussing fractional branes from the closed
string point of view, we will make a more general treatment which will be valid
for a generic value of p.

4 Boundary state description of fractional branes

In this section we analyze in some detail the Dp-branes of type II string theories
in the background of the orbifold R1,5⊗R4/Z2 using the formalism of the
boundary state.
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The starting point in string theory for describing a fractional Dp-brane
is the vacuum energy Z of the open strings stretched between two fractional
Dp-branes which is given by

Z =

∫ ∞

0

ds

s
TrNS−R

[(
1 + (−1)F

2

)(
e+ g

2

)
e−2πs(L0−a)

]
, (51)

where the first term under the trace performs the GSO projection, e and g
are the two elements of orbifold Z2, and a=1/2 in the NS sector and a= 0
in the R sector. When one takes the e inside the bracket, one gets half
of the contribution of the open strings stretched between two Dp-branes in
flat space, whereas when one takes the g inside the bracket, one obtains the
contribution of the twisted sectors of the fractional Dp-branes. Let us con-
sider in general a Dp-brane with r + 1 directions of its world-volume outside
and s = p− r directions along the orbifold R4/Z2. To be more specific, we
divide both the world-volume and the transverse directions in directions that
are outside and along the orbifold. As far as the transverse directions are con-
cerned we have then 4−s along the orbifold and 5−r outside it. In this case
the vacuum amplitude is equal to

Z = Ze + Zg , (52)

with

Ze =
1

2

∫ ∞

0

ds

s
TrNS−R

[
PGSO e−2πs (L0−a)

]

=
1

2

Vp+1

(8π2α′)
(p+1)/2

∫ ∞

0

ds

s(p+3)/2

1

2

[
f83 (q)− f84 (q)− f82 (q)

f81 (q)

]
, (53)

Zg =
1

2

∫ ∞

0

ds

s
TrNS−R

[
g PGSO e−2πs (L0−a)

]

=
Vr+1

2s (8π2α′)
(r+1)/2

∫ ∞

0

ds

s(r+3)/2

[
f43 (q) f

4
4 (q)

f41 (q) f
4
2 (q)

− f43 (q) f
4
4 (q)

f41 (q) f
4
2 (q)

]
, (54)

where PGSO is the GSO projection, q = e−πs and the f ’s are the standard one-
loop modular functions. Notice the appearance of the important factor 2−s in
Eq. (54) that is due to the integration over the bosonic zero modes along the
orbifolded directions.

After performing the modular transformation s→ t = 1/s, Ze and Zg can
be interpreted as tree level closed string amplitudes between two untwisted
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and two twisted boundary states, respectively, i.e.

Ze =
α′π

2

∫ ∞

0

dt U〈Dp | e−πt(L0+L̃0−2a)|Dp〉U , (55)

Zg =
α′π

2

∫ ∞

0

dt T〈Dp | e−πt(L0+L̃0)|Dp〉T . (56)

From Eq. (55) it is immediate to realize that Ze is one half of the amplitude
for Dp-branes in flat space, and therefore the untwisted part of the boundary
state is simply

|Dp〉U =
Tp

2
√
2

(
|Dp〉UNS + |Dp〉UR

)
, Tp =

√
π
(
2π
√
α′
)3−p

, (57)

where |Dp〉UNS and |Dp〉UR are the usual boundary states for a bulk Dp-brane.26,27

Notice that in the previous equation we have explicitly extracted from
the boundary state of a bulk brane in flat space the usual normalization
factor Tp/2.

From Eq. (54) we can see that the twisted amplitude for a fractional Dp-
brane with s directions along the orbifold is the same as the one for a fractional
Dr-brane entirely outside the orbifold, apart from a factor 2−s. Therefore,
using Eq. (56), we can deduce that the boundary state |Dp〉T is similar to the
boundary state for a fractional Dr-brane transverse to the orbifold, but with
an extra factor of 2−s/2 in its normalization. In conclusion, we get

|Dp〉T = − 1

2s/2
Tr

2
√
2π2α′

(
|Dp〉TNS + |Dp〉TR

)
, (58)

where |Dp〉TNS,R =
1

2

(
|Dp,+〉TNS,R + |Dp,−〉TNS,R

)
. (59)

Here, the Ishibashi states are

|Dp, η〉TNS = |DpX〉T |Dpψ, η〉TNS (in the NS−NS twisted sector) (60)

and |Dp, η〉TR = |DpX〉T |Dpψ, η〉TR (in the R− R twisted sector c ) , (61)

where

|DpX〉T= δ(5−r)(q̂i − yi)
∞∏

n=1

exp

[
− 1

n
α−n · S · α̃−n

]
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×
∞∏

r=1/2

exp

[
−1

r
α−r · S · α̃−r

] ∏

α

′

|pβ=0〉
∏

i

′

|pi〉 , (62)

|Dpψ, η〉TNS =
∞∏

r=1/2

exp
[
i η ψ−r ·S · ψ̃−r

] ∞∏

n=1

exp
[
i η ψ−n ·S · ψ̃−n

]
|Dpψ, η〉(0)TNS , (63)

|Dpψ, η〉TR =
∞∏

n=1

exp
[
i η ψ−n ·S · ψ̃−n

] ∞∏

r=1/2

exp
[
i η ψ−r ·S · ψ̃−r

]
|Dpψ, η〉(0)TR , (64)

where S = (ηαβ ,−δij), with the longitudinal indices α, β taking values
0, 1, . . . , p, and the transverse indices i, j taking values p + 1, . . . , 9. The
prime in the vacuum of Eq. (62) indicates that the indices β and i run only
over the longitudinal and transverse directions not included in the orbifold
because there is no zero mode on the orbifold directions.

The zero-mode part of the boundary state has a nontrivial structure in
both sectors; in the NS-NS sector it is given by 27

|Dpψ, η〉(0)TNS =

(
Ĉ γ̂6 . . . γ̂5+s

1 + i η γ̂

1 + i η

)

LM

|L〉|M̃〉 , (65)

where γ̂` are the gamma matrices and Ĉ the charge conjugation matrix of
SO(4), γ̂ = γ̂6 . . . γ̂9, and, finally, |L〉 and |M̃〉 are spinors of SO(4). The
matrices of SO(4) satisfy the following relations under transposition:

Ĉt= Ĉ , γ̂` t= Ĉ γ̂` Ĉ −1. (66)

In the R-R sector, instead, we have

|Dpψ, η〉(0)TR =

(
C γ̄0 . . . γ̄r

1 + i η γ̄

1 + iη

)

AB

|A〉 |B̃〉 , (67)

where γ̄α are the gamma matrices and C is the charge conjugation matrix of
SO(1, 5), γ̄ = γ̄0 . . . γ̄5, and, finally, |A〉 and |B̃〉 are spinors of SO(1, 5). The
matrices of SO(1, 5) satisfy the following relations under transposition:

C
t
= −C , γ̄α t= −C γ̄α C

−1
. (68)

In order to compute the fermionic zero-mode contribution to Zg in Eq. (56), it
is convenient to write explicitly the conjugate vacuum states, which are given
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for the twisted NS-NS sector and for the twisted R-R sector by27

(0)T
NS 〈Dpψ, η| = 〈M̃ | 〈L|

(
Ĉ γ̂6 . . . γ̂5+s

1− i η γ̂

1− i η

)

LM

(69)

and
(0)T

R〈Dpψ, η| = 〈B̃| 〈A|
(
Cγ̄0 . . . γ̄r

1 + i η γ̄

1− i η

)

AB

, (70)

respectively. By using the previous expressions and performing some straight-
forward algebra, it is possible to show that

(0)T
NS 〈Dpψ, η1|Dpψ, η2〉

(0)T
NS = 4 δη1η2;1 (71)

and
(0)T
R 〈Dpψ, η1|Dpψ, η2〉

(0)T
R = − 4 δη1η2;1 (72)

for the NS-NS sector and for the R-R sector, respectively.
The previous twisted and untwisted boundary states are the building

blocks for constructing the boundary state associated with the two kinds of
fractional branes corresponding to the two irreducible representations of the
orbifold group Z2 given in Eqs. (45) and (46) and that associated to a bulk
brane. Since, as one can see comparing Eqs. (45) and (46), the only difference
between the two fractional Dp-branes of Z2 is the sign for the generator γ(g),
the boundary states associated to them will just differ for a sign in front of
the twisted sector. This means that the boundary states associated to the two
fractional D-branes will be given by

|Dp〉1 = |Dp〉U+ |Dp〉T , (73)

|Dp〉2 = |Dp〉U− |Dp〉T . (74)

On the other hand, a bulk brane is not coupled to the twisted sector and
the corresponding boundary state can be obtained by simply summing-up the
boundary states of a fractional Dp-brane of type 1 and one of type 2. Indeed,
by summing Eqs. (73) and (74) one sees that the twisted contribution cancel
and one is left with 2 times the untwisted boundary state, which is precisely
that of a bulk brane:

|Dp〉b = |Dp〉1 + |Dp〉2 = 2 |Dp〉U , (75)

where the subscript b in the last equation stands for bulk. Since the tension
of a brane is proportional to the normalization of the corresponding boundary
state, Eq. (75) shows that a fractional brane has a tension that is 1/2 of that
of a bulk brane. All previous considerations can be generalized to any orbifold
of the ADE series. In particular, in these more general cases Eq. (75) becomes



748 M. Bertolini, P. Di Vecchia and R. Marotta

|Dp〉b =
∑

I

|Dp〉I , (76)

where the convention on the index I is the same as in the previous sec-
tion. Eqs. (75) and (76) are nothing else than the closed string counterpart
of Eqs. (47) and (49). Once again we see that in an orbifold theory the bulk
Dp-branes can be thought of as bound states of more elementary Dp-branes,
the so-called fractional branes.

Having determined the boundary state for both the untwisted and the
twisted sectors of a fractional Dp-brane, we will use it in the following for
computing the couplings of the brane with the closed string fields. That will
help us to determine the world-volume action of a fractional Dp-brane and the
large distance behaviour of the classical supergravity solution corresponding
to it. These are well known things by now and the reader is urged to consult
Refs. 26, 20 and 28 for details and explanations. In particular, it is important to
stress that by saturating the previously constructed boundary states with the
closed string states one gets the couplings of the D-brane with the closed string
states that are canonically normalized in the bulk action written in the orbifold
covering space. We want, however, to write the couplings corresponding to the
fields defining in the physical space. In Refs. 1 and 2 we normalized the bulk
action with an overall factor 1/2κ2orb , where κorb =

√
2κ and we took ω2 in

Eqs. (94) to be normalized in such a way that the first integral in Eqs. (94)
is equal to

√
2 instead of 1 and the second integral in Eqs. (94) is equal to 1

instead of 1/2 . In this paper we normalize the bulk action with an overall
factor 1/(2κ2) and we use an ω2 satisfying the relations in Eqs. (94).

By saturating the boundary state |Dp〉 with the massless closed string
states of the various sectors, one can determine which are the fields that couple
to the fractional Dp-brane. In particular, following the procedure found in
Ref. 26 and reviewed in Ref. 28, one can find that in the untwisted sector the
Dp-brane emits the gravitond hµν , the dilaton φ and the (p+1)-form potential
Cp+1. For the case s = 0, as for instance, is the case for a fractional D3-brane,
the couplings of these fields with the boundary state are explicitly given29 by

〈Dp |h〉 = − Tp
2
h αα Vp+1 ,

〈Dp |φ〉 = Tp
2κ

3− p
4

φVp+1 ,

〈Dp |Cp+1〉 =
Tp
2κ

C01...pVp+1 , (77)

d We recall that the graviton field and the metric are related by Gµν = ηµν + 2κhµν , where
2κ2 = (2π)7(α′)4g2s .
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where Tp=
√
π (2π

√
α′)(3−p), appearing in the normalization of the boundary

state, is related to the brane tension in units of the gravitational coupling
constant,26,27 Vp+1 is the (infinite) world-volume of the Dp-brane, and the
index α labels its p+1 longitudinal directions.

By doing this same analysis in the twisted sectors, we find that the bound-
ary state |Dp〉 emits a massless scalar b̃ (the modulus related to B2, namely the
singlet under SO(4)INT in Eq. (26)) from the NS-NS sector, and a (p+1)-form
potential Ap+1 from the R-R sector. These fields exist only at the orbifold fixed
point x6=x7=x8=x9=0 and

〈Dp | b̃〉 = ∓ Tr
2s/2 2κ

1

2π2α′
b̃V r + 1 ,

〈Dp |Ap+1〉 = ±
Tr

2s/2 2κ

1

2π2α′
A01...p Vr+1 , (78)

where Vr+1 is the (infinite) world-volume of the Dp-brane that lies outside the
orbifold, represent their couplings with the boundary state.29 The upper sign
refers to fractional branes of type 1 while the lower sign to fractional branes of
type 2 (we recall, again, that on the orbifold we are considering there are two
types of fractional branes).

From the explicit couplings (77) and (78), it is possible to infer the form
of the world-volume action of a fractional Dp-brane. Of course, the boundary
state approach allows to obtain only the terms of the world-volume action that
are linear in the bulk fields. However, terms of higher order can be determined
with other methods.2 Numerically, both couplings (77) and (78) are the same as
those we derived in Refs. 1 and 2, the only difference being, as already stressed,
that here we are expressing them in terms of κ instead of κorb. Therefore, we
obtain (in the Einstein frame) that

SDp
b

∣∣∣
U
= − τp

2

∫
dp+1x e(p−3)/4φ

√
−detGαβ +

τp
2

∫
Cp+1 , (79)

where Gαβ is the induced metric and τp ≡ Tp/κ= (2π
√
α′)−p/(gs

√
α′) is the

tension of the bulk branes which is also equal to that of the branes in flat
space. It is easy to check that this action correctly accounts for the couplings
from Eqs. (77).

Equation (79) shows that fractional branes have a tension that in the case
of the orbifold under consideration is just a half of that of a bulk brane. That
is the reason of the name fractional branes. Similarly we can see that its charge
with respect to the R-R field Cp+1 is a half of that carried by bulk Dp-branes.
As already noticed, the same conclusion holds from Eq. (75) and, for more
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general orbifolds, from Eq. (76). Summarizing, for a generic orbifold theory,
calling τp and µp the tension and the charge of a bulk Dp-brane respectively,
those of fractional branes are

τp,I =
dI
|Γ| τp =

dI
|Γ|

Tp
κ
, (80)

µp,I =
dI
|Γ| µp =

dI
|Γ|

Tp
κ
. (81)

For the twisted fields, instead, things are slightly more complicated. Using the
couplings in Eqs. (78) one can write

SDp
b

∣∣∣
T
=± 1

2π2α′
τr

2 · 2s/2 (82)

×
{
−
∫
dr+1x e(p−3)/4φ

√
−detGαβ b̃ +

∫
Ar+1 + . . .

}
,

where in the first term the four-dimensional induced metric has been inserted
to enforce reparametrization invariance on the world-volume, while the ellipses
stand for terms of higher order which are not accounted by the boundary state
approach but which, in principle, can be present.

In the case of a fractional Dp-brane with no world-volume directions along
the orbifold, we finally get the boundary actions30

S1 = − τp
2

∫
dp+1x e(p−3)/4φ

√
−detGαβ

(
1 +

b̃

2π2α′

)

+
τp
2

∫

Vp+1

[
Cp+1

(
1 +

b̃

2π2α′

)
+

1

2π2α′
Ap+1

]
, (83)

S2 = − τp
2

∫
dp+1x e(p−3)/4φ

√
−detGαβ

(
1− b̃

2π2α′

)

+
τp
2

∫

Vp+1

[
Cp+1

(
1− b̃

2π2α′

)
− 1

2π2α′
Ap+1

]
, (84)

for fractional branes of type 1 and type 2, respectively. The world-volume
action of a bulk brane is given by the sum of the two previous ones, namely
Sb = S1+S2, and is coincident with the world-volume action of a Dp-brane in
flat space. In fact, the bulk Dp-branes of an orbifold are pretty much similar
to the normal branes in flat space and indeed are only coupled to closed string
fields of the untwisted sector as the metric, the dilaton and the R-R field Cp+1.
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Fractional Dp-branes are instead characterized by the fact that they couple also
to the fields of the twisted sector. As already noticed, from the supergravity
point of view twisted fields are the zero modes of the usual NS-NS and R-R
forms present in the type II spectrum dimensionally reduced on the shrinking
cycles of the orbifold. Indeed, the orbifolds R4/Γ can be seen as singular limit
of smooth ALE spaces where the compact 2-cycles characterizing these smooth
spaces shrink to zero size. This can suggest some relation between fractional
branes and higher dimensional branes wrapped on these exceptional cycles.
We will come back on this issue in the next section.

Let us end this section by using the boundary state formalism to compute
the asymptotic behaviour of the various fields the fractional branes couple to,
in the corresponding classical brane solution (see Ref. 26 for an explanation
of this technique). Considering a stack of N1 fractional Dp-branes of type 1
and N2 branes of type 2, we find that, to leading order in N1gs and N2gs, the
metric is

ds2∼
(
1− Qp

r7−p
× 7− p

8

)
ηαβdx

αdxβ +

(
1 +

Qp
r7−p

× p+ 1

8

)
δijdx

idxj , (85)

the dilaton is

φ ∼ 3− p
4

Qp
r7−p

, (86)

and the R-R untwisted field is

Cp+1 ∼ −
Qp
r7−p

dx0∧dx1. . . ∧dxp , (87)

where

Qp ≡
κTp

(7− p)Ω8−p
(N1 +N2) , Ωq =

2π(q+1)/2

Γ(p+1
2 )

, r2 =
∑

i

(xi)
2
. (88)

The large distance behaviour of the twisted fields that are stuck at the orbifold
fixed point and therefore depend only on the transverse directions outside of
the orbifold, is given by

b̃ =
Kp

ρ3−r
, Kp =

2κTr
2s/2(r − 3)Ω4−r

1

2π2α′
(N1 −N2) , (89)

for the fluctuation of the b field, and by

Ap+1 = − Kp

ρ3−r
dx0∧dx1. . . ∧dxp , ρ2 = x2p+1 + . . .+ x25 , (90)
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for the R-R twisted field. In Sec. 7 we will write the equations of motion of
type IIB supergravity, and restricting us to the case p = 3 (and r = 0), we will
determine the complete supergravity solution describing a bound state of N1

fractional D3-branes of type 1 and N2 of type 2.

5 Fractional branes as wrapped branes

In this section we investigate at a deeper level the idea that we have just an-
ticipated, namely that fractional branes are just a certain kind of wrapped
branes. Let us first state this correspondence in a precise mathematical fash-
ion. Later, we will test its validity in more concrete terms by comparing with
the results obtained in the previous section. The orbifolds R4/Γ are singular
limits of ALE spaces, the latter being non compact four dimensional manifolds
uniquely characterized, for any given Γ, by the presence of compact holomor-
phic 2-cycles (which topologically are spheres) which shrink to zero size in the
orbifold limit. A well established mathematical result (known as the McKay
correspondence31) states that for any given ALE space these 2-cycles are in
one-to-one correspondence with the simple roots αI of a simply-laced Lie al-
gebra (the ADE extended Dynkyn diagrams) and these roots correspond to
the irreducible representations DI of Γ. Actually, the number of cycles equals
the number of roots of the non-extended Dynkyn diagrams, and hence is one
less than the full number of roots and irreducible representations. Indeed the
trivial irreducible representation, D0 (the one defined by Eq. (45), for the Z2

orbifold) is associated with a cycle C0 which is minus the sum of all other cycles

Ci, i.e. C0 = −∑n−1
i=1 diCi . The corresponding simple root, α0, is the extra

root of the extended Dynkyn diagram. Schematically, one has

αI ↔ CI ↔ DI , with I = 0, 1, · · · , n− 1 . (91)

Recalling from Sec. 3 that fractional branes are uniquely identified by the irre-
ducible representations DI of Γ, one can then suspect the existence of a relation
between fractional branes and the shrinking cycles of the orbifold R4/Γ. This
is indeed the case. The precise statement is as follows. A fractional Dp-brane
is a D(p + 2)-brane wrapped on a compact 2-cycle of a ALE manifold, in the
limit in which the volume of such cycle vanishes and the ALE space degener-
ates to the orbifold R4/Γ. These branes can exist in the orbifold limit because,
although the size of the compact cycle shrinks to zero, a non vanishing B2-flux
persists on it, keeping the brane tensionful. For a general orbifold the precise
value of this flux is ∫

Ci

B2 =
(
2π
√
α′
)2 di
|Γ| . (92)
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As already noticed, in the case of the Z2 orbifold one has di/|Γ| = 1/2. This
non-vanishing background flux is not put by hand but, as shown in Ref. 32, is
required to keep string theory conformal on the orbifold. It is this requirement
that makes the existence of fractional D-branes as stable non-perturbative
states of the string spectrum possible. As already noticed, there is one cycle
less than the number of irreducible representations. In fact, the fractional Dp-
brane associated to the trivial representation D0 is obtained by wrapping a
D(p+2)-brane on C0, with an additional background flux of the world-volume
gauge field F such that

∫
C0
F2 =2π. As we will explicitly show in the case of

Γ = Z2, this assures that such a brane gets an untwisted Dp-brane charge of the
same sign of that of the branes associated to the non-trivial representations.
This in fact guarantees that it is a brane and not an anti-brane.

Let us now explicitly verify all these statements by considering our working
example, the orbifold Z2. As already discussed, in this case we have just one
shrinking cycle, C1, and just two different kinds of fractional Dp-branes. The
fractional brane of type 1 should correspond to a D(p+ 2)-brane wrapped on
C1. The fractional brane of type 2 to a D(p + 2)-brane wrapped on C0=−C1
and with a non vanishing F-flux on it. Let us then consider the world-volume
action of a wrapped D(p + 2)-brane and see how it actually gives rise to the
actions in Eqs. (83) and (84) in the limit of shrinking cycle. In the Einstein
frame a D(p+ 2)-brane world-volume action has the form

S = − τp+2

∫
dp+3x exp

(
p− 1

4
φ

)√
−det

[
Gαβ + e−φ/2 (Bαβ + 2πα′Fαβ)

]

+ τp+2

∫ (
C ∧ eB+2πα′F

)
p+3

. (93)

The smooth limit of the Z2 orbifold is the well known Eguchi-Hanson space,
which has an antiself-dual two-form ω2 which is associated to the compact 2-
sphere C1 whose radius we define as a. We use conventions where ω2 satisfies
the following properties:

ω2 = − ∗ω2 ,
∫

C1

ω2 = 1 ,

∫

R4/Z2

∗ω2 ∧ ω2 =
1

2
. (94)

The compact cycle vanishes in the orbifold limit a→ 0 but, as already said, a
non-zero B2-flux persists on it. In order to obtain, from the action in Eq. (93),
the world-volume actions of the two fractional Dp-branes given in Eqs. (83)
and(84) we should start from an action with no world-volume fields switched-
on along the p+1 non-compact directions of the world-volume. That is to say,
both B and F are non-vanishing only on the cycle C1. The action in Eq. (93)
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describes a brane wrapped on C1 by considering the world-volume Vp+3 as a
product of the p + 1-dimensional volume Vp+1 times the volume of the cycle
C1 and keeping only those fields that are left in the limit of a→ 0:

Vp+3= Vp+1× C1 , B2= b ω2 , Cp+3= Ap+1∧ ω2 . (95)

By noticing that the metric has no support on the vanishing cycle, one can
easily factorize the matrix in the determinant in the action (93) as a direct
product of a (p + 1) × (p + 1) matrix Gαβ times a 2 × 2 matrix where only
B and F are present. Let us consider the case of a fractional brane of type 1
first. We want to show that it corresponds to a D(p+2)-brane wrapped on C1
with no F-flux. Inserting the expressions (95) into Eq. (93) one gets

S = τp+2

{
−
∫
dp+1x exp

(
p− 3

4
φ

)√
−detGαβ

∫

C1

B

+

∫
Cp+1

∫

C1

B +

∫
Ap+1

}
=

= τp

{
−
∫
dp+1x exp

(
p− 3

4
φ

)√
−detGαβ

(
1

2
+

1

(2π
√
α′)

2 b̃

)

+

∫
Cp+1

(
1

2
+

1

(2π
√
α′)

2 b̃

)
+

1

(2π
√
α′)

2

∫
Ap+1

}
. (96)

In the second step we have used the fact that

(2π
√
α′)

2
τp+2 = τp and

∫

C1

B = b = (2π
√
α′)

2

(
1

2
+

1

(2π
√
α′)

2 b̃

)
, (97)

where b̃ is the fluctuation of the B2-flux around the background value given
in Eq. (92). The above action precisely coincides with that in Eq. (83), as
anticipated. By repeating the same reasoning for a D(p + 2)-brane which is
wrapped on C0=−C1 but with an additional F-flux such that

∫
C0
F2=2π one

easily gets

S = τp+2

{
−
∫
dp+1x exp

(
p− 3

4
φ

)√
−detGαβ

∫

C0

(B + 2πα′F)

+

∫
Cp+1

∫

C0

(B + 2πα′F) +

∫
Ap+1

}



N=2 four dimensional gauge theories from fractional branes 755

= τp

{
−
∫
dp+1x exp

(
p− 3

4
φ

)√
−detGαβ

(
1

2
− 1

(2π
√
α′)

2 b̃

)

+

∫
Cp+1

(
1

2
− 1

(2π
√
α′)

2 b̃

)
− 1

(2π
√
α′)

2

∫
Ap+1

}
, (98)

which is just the action in Eq. (84). In deriving the above equation it is worth
noting that
∫

C0

(B + 2πα′F) = −
∫

C1

B + 2πα′
∫

C0

F (99)

= − (2π
√
α′)

2

(
1

2
+

1

(2π
√
α′)

2 b̃

)
+ (2π

√
α′)

2
= (2π

√
α′)

2

(
1

2
− 1

(2π
√
α′)

2 b̃

)

From the last equation it is clear that, as anticipated, the presence of the F-
flux has the effect of letting the asymptotic value of the untwisted charge to be
unchanged. By summing up the two actions (96) and (98) one gets back the
world-volume action of a bulk brane, according to the idea that bulk branes,
in an orbifold theory, can be thought of as bound states of fractional branes
of different kinds. Again, the procedure described throughout this section for
the the Z2 orbifold, can be easily extended to more general Γ’s. We refer to
Ref. 11 for a complete treatment of these more general cases.

6 Requirements of supersymmetry

The goal of this section and the subsequent one is to obtain the supergravity
solution describing (a bound state of) fractional D3-branes on the Z2 orbifold.
In this section we study the constraints that supersymmetry imposes on the
solution. We do not do this just for completeness, but because, as we shall
see, supersymmetry actually imposes certain conditions on the fields entering
the solution which drastically simplify the structure of the equations of motion
and, correspondingly, the derivation of the solution itself.

We are interested, as usual, in classical supersymmetric backgrounds where
the dilatino λ and the gravitino ψM are consistently put to zero. Moreover, in
order to insure supersymmetry, we require that the supersymmetry variations
of both λ and ψM be vanishing. In this way we will obtain some constraints
on the ansatz. The following33 is a compact way of writing the gravitino and
dilatino variation:

κ δψM =
(
DM −

i

2
QM

)
ε+

i

16 · 5! FM1...M5
ΓM1...M5ΓM ε
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− 1

16

(
2 6 G̃(3)ΓM + ΓM 6 G̃(3)

)
ε∗, (100)

κ δλ = i

(
6 Pε∗− 1

4
6 G̃(3)ε

)
, (101)

where 6 G̃(3)= (1/3!) ΓMNP G̃MNP , DM = ∂M + (1/4)ωMrsΓ
rΓs is the covariant

derivative with respect to the metric gMN ,

PM =
∂MB

1−BB∗ , QM =
Im (B ∂MB

∗)

1−BB∗ ,

B=
1 + iτ

1− iτ , G̃(3)= i

(
1 + iτ∗

1− iτ

)1/2
eφ/2G3 , (102)

and ε is a complex ten-dimensional spinor with definite chirality: Γ11ε = −ε ,
Γ11= Γ0 . . .Γ9 , denoting flat indices by the underlined indices. Finally, the
complex scalar τ and the complex 3-form G3 are equal to

τ = C0 + i e−φ and G3 = F3 + τH3 , (103)

where F3 = dC2 and H3 = dB2. Notice that fractional branes actually cou-
ple to G3 (or better to say, to the twisted fields arising from its dimensional
reduction on the vanishing cycle of the orbifold, see previous sections), this
being a specific feature of a general class of supergravity solution recently dis-
cussed in the literature (for an explicit example on smooth ALE spaces, see for
instance, Ref. 34). For this reason, in the following we closely follow the ap-
proach discussed in Refs. 35 and 36, where the supersymmetry constraints for
solutions with non trivial G3-flux have been discussed. As far as our orbifold
is concerned, these include both fractional D3 and D7 branes while D1 and D5
branes belong to a different class of solutions (see the above cited references
for details). An ansatz compatible with the symmetries of the system is

ds2 = Z−1/2ηαβdx
αdxβ+ Z1/2e−φ(x

i)δijdx
idxj + Z1/2δmndx

mdxn , (104)

and

F̃5 = dH−1∧V4 +∗
(
dH−1∧V4

)
, (105)

with α, β = 0 . . . 3 , i, j = 4, 5 , m,n = 6 . . . 9 . As far as the transverse space is
concerned, it is convenient to introduce complex coordinates zi (i = 1, 2, 3) as

z1= x4+ ix5, z2= x6+ ix7, z3= x8+ ix9. (106)



N=2 four dimensional gauge theories from fractional branes 757

Let us start studying the dilatino variation. The vanishing of the dilatino equa-
tion is obtained by a separate cancellation between the two terms appearing
in Eq. (101):

6 Pε∗= 0 , 6 G̃(3)ε = 0 . (107)

In the case of a D3-brane the first condition is simply solved by considering
a constant τ . This is, however, not a good solution for the D7-brane since it
is coupled to τ . On the other hand, τ can depend only on the coordinates
transverse to the world-volume of the D7-brane, namely on z1 and z̄1. But, if
we assume that in this case τ is a holomorphic function of z1 (namely ∂ 1̄τ = 0)
and impose the condition Γ1ε∗= 0 (the index 1 corresponds to the first complex
variable introduced in Eq. (106)) on the spinor ε, it is easy to check that the
first condition in Eq. (107) is again satisfied.

The second of Eqs. (107) fixes some components of G̃(3) to be zero. In order
to satisfy it we have to extend the previous condition Γ1ε∗= 0 to the other two
values of i . Moreover we assume that G̃3 has only non-zero components if the
indices are along the six-dimensional space transverse to the D3-brane. With
these two assumptions the second equation in (107) is satisfied if we impose36

G̃ijk = G̃īik = 0 , i, j, k = 1, 2, 3 . (108)

Let us now study the gravitino variation. By imposing, again, a separate
cancellation between the terms depending on 6 G̃(3) and the other ones in
Eq. (100), we arrive at

(
DM −

i

2
QM

)
ε+

i

5! · 16 FM1...M5
ΓM1,...M5ΓM ε = 0 , (109)

(
26 G̃(3)ΓM + ΓM 6 G̃(3)

)
ε∗= 0 . (110)

Once specified for the longitudinal components of the D3-brane, Eq. (109) can
be reduced by using Eqs. (104) and (105) to

∂αε−
1

8
ΓwΓα

[
1− 1

2

(
Z

H
+
H

Z

)
Γ(5)

]
ε = 0 , (111)

where Γw= (γi∂i + γm∂m) lnZ , Γ(5) = iΓ0 . . .Γ3 . Equation (111) is clearly
satisfied by choosing Z =H and by taking a spinor ε that does not depend
on the coordinates of the longitudinal directions of the D3-brane and that has
positive four-dimensional chirality: Γ(5)ε = ε . This equation, together with
the condition Γ11ε = − ε implies that

Γ(7)ε = − i ε , Γ(7) = Γ4 . . .Γ9 . (112)
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This condition leads to the identity 6 G̃(3)ε = i6 G̃(3)Γ(7)ε, which, when solved,
gives the important relation37,38

−i G̃(3)=
∗6 G̃(3) , (113)

where ∗6 denotes the Hodge dual in the six-dimensional transverse space of a
D3-brane.

In order to study the conditions that follow from the components trans-
verse to the D3-brane of Eq. (109) , it is convenient to decompose the 10-
dimensional Dirac matrices in terms of the 4 and 6-dimensional ones by writing
ε = ξ⊗η , where ξ and η are spinors in four and six dimensions, respectively,
satisfying the conditions

γ5ξ = ξ , γ7η = − iη , Γ11 = − i γ5⊗γ7. (114)

By using the previous decomposition in the transverse components in Eq. (109)
we obtain

∂iη +
1

4
∂i α(z1) η −

1

8
∂i lnHη = 0 (115)

and

∂ ī η −
1

4
∂ī ᾱ(z̄1) η −

1

8
∂ ī lnHη = 0 , (116)

with α(z1) + ᾱ(z̄1) = φ + ln(1 − BB∗) . The previous system of equations is
simply solved by choosing η = H1/8exp

[
− (α(z1)− ᾱ(z̄1))/4

]
χ, with χ being

a constant spinor.
Finally, Eq. (110) fixes that some other components of G̃(3) are zero. In

particular, it imposes36

G̃īj̄k̄ = G̃īj̄k = 0 . (117)

Collecting together Eqs. (108) and (117) we conclude that the only non-
vanishing components of G̃3 are G̃ījk with i 6= j, k . This implies that G̃(3)

is a (2,1) form. In the next section we will see that this property simplifies the
equation of motion.

7 Classical solution for fractional D-branes

In this section, by considering type IIB supergravity on the Z2 orbifold, we will
derive the complete classical solution describing a bound state of N1 fractional
branes of type 1 and N2 of type 2. We will see that this solution belongs to
a class of type IIB supersymmetric solutions all characterized by the presence
of a non-trivial G3-flux.



N=2 four dimensional gauge theories from fractional branes 759

Let us start by considering the action (in the Einstein frame) of type IIB
supergravity in ten dimensions which can be written ase

SIIB =
1

2κ2

{∫
d10x
√
−detGR− 1

2

∫ (
dφ ∧∗dφ+ e−φH3∧∗H3 + e2φF1∧∗F1

+ eφF̃3∧∗F̃3 +
1

2
F̃5∧∗F̃5 − C4∧H3∧F3

)}
, (118)

where F̃3= F3 + C0∧H3 , F̃5= F5 + C2∧H3 , (119)

and H3= dB2 , F1= dC0 , F3= dC2 , F5= dC4 (120)

are the field strengths of the NS-NS 2-form and of the 0-, 2-, and 4-form
potentials of the R-R sector, respectively. As usual, the self-duality constraint
∗F̃5 = F̃5 has to be implemented on shell.

In order to find a classical solution corresponding to fractional D3-branes,
we have to add to the above bulk action the corresponding world-volume action,
that we call generically Sb. By varying the sum of bulk and boundary actions
one can derive equations of motion for various fields of type IIB supergravity.
One gets

for dilaton: d∗dφ+
1

2
e−φH3∧∗H3− e2φF1∧∗F1−

1

2
F̃3∧∗F̃3+ 2κ2

δLb
δφ

= 0 ; (121)

for axion: d
(
e2φ ∗F1

)
−eφH3∧∗F̃3+2κ2

δLb
δC0

= 0 ; (122)

for R− R 2− form: d
(
eφ ∗F̃3

)
+ F̃5∧H3 + 2κ2

δLb
δC2

= 0 ; (123)

for NS−NS 2− form field: d
(
e−φ

∗
H3+eφC0F̃3

)
− F̃5∧F3+2κ2

δLb
δB2

= 0 ; (124)

for R−R 4−form field: d ∗F̃5 +H3∧F3 + 2κ2
δLb
δC4

= 0 ; (125)

and finally

Rµν−
1

4 · 4! (F̃5)µρστδ(F̃5)
ρστδ
ν +2κ2

δL
δGµν

=
1

2

[
∂µφ∂νφ+ e2φ∂µC0∂νC0

]
+Tµν

(126)

e Our conventions for curved indices and forms are the following: ε0...9=+1 ;

the signature is (−,+9) ; µ, ν=0, . . . , 9 ; ω(n)=(1/n!)ωµ1...µndx
µ1∧. . .∧dxµn ,

and ∗ω(n)=
(√
−detG)/(n! (10− n)!

)
εν1...ν10−n µ1...µn ωµ1...µn dxν1∧. . .∧dxν10−n .
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for the metric, where

Tµν =
e−φ

2 3!

[
3HµσρH

σρ
ν − Gµν

4
H2

]
+

eφ

2 3!

[
3 (F̃3)µσρ(F̃3)

σρ
ν − Gµν

4
F 2
3

]

(127)
and Lb is the Lagrangian corresponding to the boundary action. By using the
quantities introduced in Eq. (103), it is possible to rewrite the four equations
for the dilaton, the axion and the two 2-form potentials in terms of two complex
equations as

d ∗dτ + ieφdτ∧∗dτ + i

2
G3∧∗G3 = 2iκ2e−φ

[
δLb
δφ

+ ie−φ
δLb
δC0

]
(128)

and

d ∗G3 + dτ∧
[
ieφ ∗G3 +

∗H3

]
− iF̃5 ∧G3 = − 2iκ2

[
δLb
δB2

− τ δLb
δC2

]
. (129)

For a D3-brane we assume the following ansatz for the metric:

ds210 = H−1/2ηαβ dx
αdxβ +H1/2 ds26 . (130)

For the self-dual 5-form field strength we assume

F̃5 = d

(
1

H
dx0∧. . . ∧dx3

)
+ ∗d

(
1

H
dx0∧. . .dx3

)
. (131)

Notice that the six-dimensional space transverse to the D3-brane does not need
to be flat. The fact that the warp factors for the metric and for the 5-form field
strength are the same is a consequence of supersymmetry, as it has been shown
in the previous section. Using Eqs. (130) and (131), together with Eq. (113)
and the following equation

∗G3 = − ∗6G3
1

H
dx0∧. . .∧dx3 , (132)

one can rewrite Eq. (129) as follows:

− d ∗6G3∧
1

H
dx0∧. . .∧dx3 = −2iκ2

[
δLb
δB2

− τ δLb
δC2

]
. (133)

On the other hand, we can write:

G3 = G1∧ ω2 , G1 ≡ dγ = dc+ i db , (134)

where for a D3-brane we have taken τ to be constant and equal to i (notice that
in terms of higher dimensional fields we can write γ =

∫
C1
(C2 + iB2) ). This is
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possible because Eq. (128) for τ is identically satisfied if we assume Eq. (113)
as required by supersymmetry. On the other hand, since ω2 is a (1,1)-form, the
condition that G3 should be a (2, 1)-form implies γ to be an analytic function
of the complex variable z1= x4+ ix5(which, from now on, we call z). By using
the boundary action in Eq. (133) one arrives at the following equation for γ:

− d ∗6dγ = i
2κ2τ3
2π2α′

(N1 −N2) δ
(2)(x) dx4∧dx5∧∗4ω2 , (135)

where the two-dimensional δ-function is in the space spanned by x4 and x5.
From Eq. (135), after some calculation, one gets

∂i∂
iγ = 2π iK3 δ

(2)(x) , (136)

where K3 is defined in Eq. (89), K3 = 4πgs α
′(N1 −N2) . The solution reads:

γ = iK3 log (z/z(1)) , (137)

where z(1) = ε exp
[
−π/ 2gs(N1−N2)

]
(this definition ensures that at |z| = ε,

which is a long-distance regulator for the logarithmic function, the field γ has
its correct background value). Let us now consider the equation that determine
the warp factor H. Inserting the ansatz (130)-(131) into Eq. (125), we get:

δij∂i∂jH +
1

2
|∂zγ|2 δ(x6) . . . δ(x9) + 4π3Q3 δ(x

4) . . . δ(x9) = 0 , (138)

where Q3 is defined in Eq. (88), Q3 = 2πgs(α
′)2(N1 +N2) . It is easy to verify

that Eq. (126) gives exactly the same equation for the warp factor H. Using
standard technique, it is possible to integrate Eq. (138) and obtain

H = 1 +
Q3

r4
+
K2

3

2 r4

[
log

(
r4

ε2(r2 − |z|2)

)
− 1 +

|z|2
r2 − |z|2

]
. (139)

While the previous expressions, for gsN1, gsN2 ¿ 1, reproduce the large dis-
tance behaviour obtained from the boundary state in Sec. 4, they finally provide
the complete supergravity solution we were searching for.

A closer look at the form of the warp factor H, shows that the metric
has a naked singularity at some point r = r0 where indeed H vanishes. The
singularity is of repulson type39 because in its vicinity the gravitational force,
that is related to the gradient of G00, is repulsive. The appearance of these kind
of singularities is quite a general feature of supergravity solutions corresponding
to non-conformal sources and one expects that string theory should be able to
resolve them. In this case, as we discuss in the next section, the singularity is
resolved by an enhançon mechanism, similar to the one originally discussed in
Ref. 21, that excises the region close to the singularity giving a regular solution
in the region of the space time where it has a physical meaning.
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8 The probe action and the N = 2 gauge theory

In this section we will try to see how much can supergravity tell us about the
gauge theories describing the low energy effective dynamics of fractional branes.
As we have discussed in Sec. 3, fractional D3-branes are described, in general,
by non-conformal N=2 super Yang-Mills, at low energy. Therefore, answering
the question above could give non trivial insight on non-conformal extensions
of the gauge/gravity correspondence. While we will give a precise meaning, at
the gauge theory level, to all relevant physical quantities entering the super-
gravity solution, we will also find out that in order to get a prediction for the
full moduli space of the N= 2 gauge theory one should go beyond the pure
supergravity analysis. This is a quite general feature when considering non-
conformal extensions of the gauge/gravity correspondence, and the answer, in
this case, will be that supergravity does indeed encode the perturbative moduli
space of the gauge theory but it is not able to include non-perturbative correc-
tions. As it will become clear in what follows, the so-called enhançon21 plays
a crucial role in all that. Indeed, besides curing the naked singularity in a way
that we are going to discuss, it will also put a limit on the range of validity
of the gauge/gravity correspondence pointing to a duality where string states
play a role, even at low energies. After these anticipations, let us now proceed
to our analysis.

As explained in Sec. 3, the low energy theory living on N1 fractional D3-
branes of type 1 and N2 of type 2 is N = 2 super Yang-Mills with gauge groups
SU(N1)× SU(N2) and two hypermultiplets transforming in the (N1, N2) and
(N1, N2), respectively. In order to get information on this gauge theory from
supergravity we shall use the probe technique. For a review of this technique
we refer to Ref. 40.

Let us first consider a fractional D3-brane probe of type 1, carrying a
gauge field Fαβ and slowly moving in the supergravity background produced
by N1 fractional D3-branes of type 1 and N2 of type 2. From the gauge theory
point of view this corresponds to the SU(N1)×SU(N2)×U(1) broken phase of
SU(N1+1)×SU(N2) gauge theory and the probe gauge coupling should equal
the gauge coupling of the first gauge group, SU(N1), at an energy scale Λ which
is related to the distance |z| at which the probe brane is taken far from the
other branes. We fix the static gauge and study the world-volume action of the
probe, regarding the transverse coordinates as Higgs fields Φi = (2πα′)−1xi,
and expanding up to quadratic terms in derivatives. By straightforward com-
putations we find that the probe action becomes

S = S0 + Sgauge , (140)
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where S0 is just the same action of Eq. (83) with p = 3 , while

Sgauge = −
1

4πgs

∫
d4x

√
−detGαβ

×
{
1

4
e−φGαγGβδFαβFγδ +

1

2
GijG

αβ∂αΦ
i∂βΦ

j

}
1

4π2α′

∫

C1

B2

+
1

4πgs

∫
d4x

1

4
FαβF̃

αβ 1

4π2α′

∫

C1

C2 , (141)

where F̃αβ=(1/2) εαβγδFγδ . Inserting in S0 the supergravity solution obtained
in the Sec. 7, one can easily see that S0 becomes independent of the distance
between the probe and the source branes that yield the classical solution. This
is in agreement with the fact that there is no interaction between the probe
and the source since fractional branes are BPS states and do not exert any
force on each other.

Considering now the above equation, we see that the dependence on the
function H drops out in this case too, while the kinetic terms for the gauge field
strength Fαβ and the scalar fields Φi have the same coefficient, in agreement
with the fact that the gauge theory living on the brane has N =2 supersym-
metry. Indeed, one getsf

Sgauge = −
1

g1(µ)2

∫
d4x

{
1

2
∂αΦ

i∂αΦi +
1

4
FαβF

αβ

}
+

θ1
32π2

∫
d4xFαβF̃

αβ ,

(142)
where

1

g1(µ)2
=

1

4πgs

∫

C1

B̂2 =
1

g21
+
N1 −N2

4π2
log µ (143)

and θ1=
2π

gs

∫

C1

Ĉ2 = 2 (N1 −N2) θ (144)

are the effective Yang-Mills gauge coupling and the θ-angle, respectively. The
renormalization group scale is defined by µ = |z|/ε ≡ Λ/Λ0, while g

2
1 = 8πgs

is the bare coupling, i.e. the value of the gauge coupling at the ultraviolet
cutoff g Λ0 = (2πα′)−1ε. Equation (143) correctly predicts, from supergravity,

f For the sake of simplicity in this formula (and subsequent ones) we define dimensionless

2-forms B̂2 and Ĉ2 as B̂2 =
(
2π
√
α′
)
−2
B2 and Ĉ2 =

(
2π
√
α′
)
−2
C2 .

g The probe analysis automatically fixes the gravity/gauge theory distance/energy relation
to be41 |z| = 2πα′Λ.
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g1(µ) to be the running coupling constant of an N=2 supersymmetric gauge
theory with gauge group SU(N1) and two hypermultiplets in the (N1, N2) and
(N1, N2), respectively (N2 is a flavour index here).

By probing now the same background with a fractional D3-brane of type 2,
one gets similar results. Eqs. (143) and (144), in particular, become

1

g2(µ)2
=

1

4πgs

(
1−
∫

C1

B̂2

)
=

1

g22
− N1 −N2

4π2
log µ (145)

θ2 = −2π

gs

∫

C1

Ĉ2 = 2 (N2 −N1) θ , (146)

where g2(µ) is the gauge coupling of the second gauge group SU(N2) at the
scale µ and g22 = 8πgs (the role of N1 and N2 is exchanged now, N2 is a colour
index while N1 a flavour one). Again, the supergravity prediction exactly
agrees with the gauge theory expectations. Notice that the two β-functions
that one gets from Eqs. (143) and (145), have opposite sign, according to the
sign of N1 − N2. For N1 > N2 (we will always use this convention in the
remaining part of this section), the first gauge theory is UV-free while the
second one is IR-free. This follows from the relative weights in the two theories
of the matter present. In particular, one finds that

β (g1) = −
N1 −N2

8π2
g1(µ)

3 , β (g2) = +
N1 −N2

8π2
g2(µ)

3 . (147)

Notice also that according to the general discussion in Sec. 3, the system we
have probed actually corresponds to a bound state of say,M≡N1−N2 fractional
branes of type 1 and N2 bulk branes. This is the reason why the β-functions
just depend on M , the net number of fractional branes present. The gauge
theory living on a bulk brane is conformal invariant and hence, bulk branes
are expected not to give any contribution to the β-function. This can also be
seen by noticing that

1

g1(µ)2
+

1

g2(µ)2
=

1

4πgs
, (148)

1

g1(µ)2
− 1

g2(µ)2
=

1

2πgs

(∫

C1

B̂2 −
1

2

)
, (149)

where the sum of the couplings, corresponding to the contribution of the bulk
branes, is not running, while the difference, measuring the (net amount of)
fractional branes contribution, is running according to the (fluctuation of the)
B2-flux.
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The previous results show that supergravity provides the perturbative
moduli space of the gauge theory (which is exact at one loop, in this case).
But what about non-perturbative contributions? Here is where the enhançon
comes into play. We have seen that, because of the presence of a non-vanishing
background B2-flux,

32 the fractional branes are in general tensionful. On the
other hand, since the factor in front of the gauge kinetic term in Eq. (142) is
the same that gives the effective tension of the brane, as one can see comparing
Eqs. (141) and (83), the tension of a fractional brane is running precisely as the
gauge coupling constant in Eq. (143). From it one sees that on the geometric
locus defined by

z(1) = ε exp
[
− π / 2(N1 −N2)gs

]
, (150)

the type 1 brane probe becomes tensionless! This locus is known as the en-
hançon.21 This is the point where the fluctuation of the B2-field cancels pre-
cisely its background value. The vanishing of the probe tension indicates that
at the distance z(1) new light (string) degrees of freedom come into play,10

meaning that the supergravity approximation leading to the solution described
in the previous section is not valid in the region of space-time ρ < z(1) . So,
the solution we have found makes sense only at distances bigger than the en-
hançon and the unwanted repulson singularity, which is cloaked inside it (one
can show this is the case for any choice of the parameters), is then excised.

One can immediately recognize what is the meaning of the enhançon from
the gauge theory point of view. In fact Eq. (143) shows that the enhançon is the
scale Λ(1)= (2πα′)−1z(1) where the gauge coupling g1(µ) diverges and where
non-perturbative corrections become relevant (Λ(1) then corresponds to the
dynamically generated scale). This automatically implies that the supergravity
solution is only able to reproduce the perturbative moduli space of the gauge
theory, while the appearance of the enhançon prevents from using the classical
solution to analyze the strong-coupling properties of the gauge theory, where
instanton effects should become relevant.9

A similar reasoning can be repeated for the probe brane of type 2. The
only subtle point one should bare in mind is that the β-function is now IR-free.
The consequence is that the corresponding enhançon appears in the UV, which
indeed now corresponds to the strongly coupled region of the theory. This
region is, however, not really important in our present analysis because, for any
value of the parameters, it is always bigger then the UV cut-off Λ0=(2πα′)−1ε
and hence out of reach of the supergravity solution, whose logarithmic running
for twisted fields is regulated at |z| = ε. Indeed, the expression of the type 2
enhançon is

z(2) = ε exp
[
π / 2(N1 −N2)gs

]
> ε . (151)



766 M. Bertolini, P. Di Vecchia and R. Marotta

Summarizing, the physical picture one ends up with is that supergravity repro-
duces the gauge theory of SU(N1) × SU(N2) between the UV-cutoff Λ0 and
the type 1 dynamically generated scale Λ(1) (the enhançon), while the extreme
IR and UV regions are not accessible by supergravity.

From the previous considerations, one should suspect the existence of a
precise relation between the twisted field γ and the period matrix τ of Seiberg-
Witten.9 To find it out we should consider, for each gauge group, the explicit
expression of the prepotential F , compute it in the corner of the moduli space
consistent with our probe analysis, and finally recall the relation between F
and τ , namely τ lm = ∂2F/∂al ∂am , where al and am are the moduli of the
gauge theory (l,m = 1, . . . , NI + 1 and I = 1, 2 since we have two gauge
groups). For any of the two gauge groups, the corresponding perturbative
prepotential reads (see for instance, Ref. 42)

Fpert =
i

8π

NI+1∑

l,m=1

(al − am)
2
log

(al − am)2

Λ2
(I)

− i

8π

NI+1∑

l=1

2NJ∑

k=1

(al +Mk)
2 log

(al +Mk)
2

Λ2
(I)

, (152)

where Λ(I) is the dynamically generated scale (see above), and Mk are the
masses of the hypermultiplets corresponding to strings stretched between
branes of different types (the sum over k goes up to the number of hyper-
multiplets which is 2 times the number of flavours which for the gauge group
U(NI) is indeed NJ ).

The type I probe analysis corresponds to the breaking of the corresponding
gauge group SU(NI + 1)→ SU(NI)× U(1) , which, in terms of the moduli al
means that one modulus, say aNI+1≡ a, is taken to be much bigger than the
others. This simplifies the prepotential in Eq. (152) as

F =
i

4π
(NI −NJ ) a2 log

a2

Λ2
(I)

, (153)

which implies that

τ l,m ∼ 0 , with l,m = 1, . . . , NI , (154)

τNI+1,NI+1 ≡ τI =
4π

gI(µ)2
i+

θI
2π

=
i

π
(NI −NJ ) log a/Λ/Λ(I) . (155)
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From the above equation one gets the precise relation between the complex
twisted field γ̂(z) and τI computed above:

γ̂I(z) = gsτI(z) , (156)

where we define

γ̂1 =

∫

C1

(
Ĉ2 + iB̂2

)
, γ̂2 =

∫

C0

(
Ĉ2 + iB̂2 + 2πi α′F

)
. (157)

Again, as already stressed, the above identification holds from the supergravity
solution only up to the perturbative part of τ .

For the sake of clarity, we finally summarize in table 1 all the relations
between supergravity and gauge theory quantities.

GRAVITY GAUGE THEORY

Transverse coordinates xi ←→ Φi Higgs field

B2-flux through C1
∫
C1
B2 ←→ g1(µ) U(N1) gauge coupling

B2-flux through C0
∫
C0
B2 ←→ g2(µ) U(N2) gauge coupling

C2-flux through C1
∫
C1
C2 ←→ θ1 U(N1) θ-angle

C2-flux through C0
∫
C0
C2 ←→ θ2 U(N2) θ-angle

IR-regulator ε←→ Λ0 UV-cutoff

Enhançon z(1) ←→ Λ(1) Dynamically generated scale

Table 1: Correspondence between gravity and gauge theory parameters. The precise

numerical relations can be found in the main text.

Let us end this section with few final observations. As it has been discussed
in Ref. 11, by computing the flux of the untwisted field strength F̃5 through a
surface which intersects the z-plane on some given curve Σ, one gets

Φ(F̃5) = 2π2gs

(
N1 +N2 +

gs
2π

(N1 −N2)
2
log
|z|
ε

)
. (158)

From the above equation one can see that the 5-form flux is running. This is a
general feature of supergravity solutions generated by non-conformal sources
(see for instance, Refs. 43 - 45), indicating that the effective untwisted charge is
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decreasing through the IR, the decrease being proportional to the net amount
of fractional branes present,h M=N1−N2. Qualitatively, this is a correct result
since the untwisted charge corresponds to the number of degrees of freedom of
the dual gauge theory, and these are expected to diminish through the IR. It is
also correct that this decreasing is proportional to M , since fractional branes
make the gauge theory non-conformal and hence are the ones responsible for
the running. However, in order to make a more quantitative matching, one
should have a better understanding of the physics of the enhançon. There
have been various efforts in trying to understand at a deeper level the role of
the enhançon for this and other systems (see in particular, Refs. 10, 46, and 47
for interesting discussions on this point). However, quantitative results to go
beyond the above successful perturbative analysis, have not yet been obtained.
The fact that fractional D-brane probes vanish at the enhançon, has suggested
the idea21 that it is not possible to build up a source made of fractional D-
branes located at the origin r = 0. Rather, the constituent branes are smeared
on the enhançon shell and branes that are coupled to the twisted fields and
that therefore become tensionless at the enhançon cannot enter inside the
enhançon region. In this way it is clear that, while the exterior solution, due to
Gauss’ theorem, is of course unchanged, the interior one could look completely
different. This picture has been shown to agree both with excision criteria48,49

and, more concretely, with some solid gauge theory consistency checks which
have been done using the SW curve.47 At the same time the enhançon cannot be
the end of the story. Indeed, at the enhançon the moduli space metric, which is
proportional to g1(µ)

−2, vanishes. According to Seiberg-Witten,9 this cannot
be the case in the full quantum moduli space of N=2 super Yang-Mills, and
in fact you should take into account the instanton corrections, which become
relevant at strong coupling, and that give rise to a positive definite moduli
space metric. This is consistent with the previous supergravity analysis, which
indicates the presence of new light degrees of freedom at the enhançon scale.
By including them in the low energy effective action, one should get back an
enhançon free and singularity free solution, as discussed recently in Ref. 50
and, on the side of the gauge theory, one should recover the non-perturbative
corrections.

Let us end with the following (qualitative) observation. From the gauge
theory side, the effective gauge theory will receive corrections proportional to

h Notice that at the enhançon the fractional brane contribution vanishes and the flux becomes
proportional to the amount of bulk charge contribution, i.e. Φ(F̃5) = 4π2gsN2 (recall that
we are choosing N1>N2 and therefore N2, according to the discussion in Sec. 3, is the actual
number of bulk branes present in the bound state).
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powers of the one-instanton contribution to the partition function

exp (2π i τ1) =

(
Λ(1)

z

)2 (N1−N2)

. (159)

As noticed in Ref. 51, on the string theory side such effects can be due to frac-
tional D-instantons (which are D1 Euclidean branes wrapped on the vanishing
cycle C1 and which indeed become tensionless at the enhançon), whose action
is indeed

exp

(
2πi

γ̂1
gs

)
≡ exp (2π i τ1) . (160)

Unfortunately, it has not been possible until now to make this argument
quantitative and in particular to determine the coefficients of the instanton
corrections.52

Again, all what we have been discussing in this section can be extended to
more general orbifolds of the complete ADE series. We refer again to Ref. 11
for a complete treatment of these more general cases.
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