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After brief personal recollections of the author’s long-time friendship with Misha

Marinov the problem of particle production by classical time-varying scalar field

is discussed. In the quasiclassical limit the calculations are done by imaginary

time method developed, in particular, in Marinov’s works. The method permits to

obtain simple analytical expressions which well agree with the later found numerical

solutions. The results are compared with perturbative calculations and it is argued

that perturbation theory gives an upper limit for the rate of production.
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1 Personal recollections

It is difficult to write about a close friend who died so unexpectedly and so
early. Time runs fast and it seems that it was just yesterday that we saw each
other and talked a lot on every possible subject. I really miss these discussions
now. The last time that I saw Misha Marinov was spring 1999. I was visiting
Weizmann Institute of Science in the frameworks of the Landau-Weizmann
Program and used this opportunity to come to Haifa where Misha lived and
worked in Technion. It was a nice sunny and fresh morning when we arrived
with my wife Inna at the Haifa railway station, where Misha met us and drove
along a beautiful road up the Carmel Mountain to his home where Lilia, his
wife, waited us with a delicious lunch. Misha was in high spirits, the four of us
being old friends, and we were very glad to see each other, although he slightly
complained about, as he said, a small pain in his spine. None of us knew at
that moment that it was a first sign of a fast and terrible disease.

Our friendship with Misha began, I think, in 1965 when we both were
graduate students. We happened to be in the same plane on the way to
Yerevan to the First International Nor-Ambert School on Particle Physics.
Together with another young physicist from ITEP, Misha Terentev, we shared
a small hut and enjoyed our first international conference and the charming
and hospitable town of Yerevan.

Misha was two years older than me but I had a feeling that his knowledge
of physics, especially of mathematical physics, was at a professor’s level, and
benefited a lot from our communications. Later we both worked at ITEP
theory group and it was always instructive and interesting to talk with him not
only about physics but about practically any subject, especially history where
Misha had unusually deep and extensive knowledge whether it be ancient or
modern.

Our friendship turned into friendship between families when in 1970 we
started to live in the same apartment building near ITEP and the distance
between our apartments was only 1-2 minute walk up or down the stairs. In
1979 Misha quit his position at ITEP and applied for permission to emigrate
to Israel. Immediately life became much harder for him. It was difficult to
find a job that could give enough money to support his family of four. Special
rules existed at that time in the Soviet Union to prevent people from working
without strict state control. In summer seasons (plus a part of spring and
autumn) Misha worked as a construction worker, building small private houses
(dachas) in the country. In winter he did some work for the official “Center of
Translations” translating scientific papers or books from English into Russian
or vice versa. However this kind of job was allowed only if one has another
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permanent place of work at one or another state enterprise, which Misha had
not. At some stage they requested from him a certificate that he had such
a job and since nothing could be presented, he was fired. So my wife, Inna,
formally took this job and fetched for him papers to translate from the Center.
Misha translated them, Inna presented the translated papers to the Center,
received the money and brought it to Misha or his wife, Lilia. That’s how it
worked.

I have to confess that I also participated in a similar deceptive activity.
A few papers and books translated into Russian under my name were in fact
translated by Misha. In particular, the review paper by S. Coleman “The
magnetic monopole fifty years later”1 was translated for Uspekhi Fiz. Nauk,
vol. 144, by Marinov but under my name. Moreover, the editors wanted to
have a short review on the activity related to magnetic monopoles up until the
moment when the paper was translated, i.e. two years after the original one
had been written. Again, Misha wrote the paper and I only signed it (honestly,
I also read it and liked it very much). So he got the money and I got the fame.
Now I have to set things right and change Ref. 2 into Ref. 3.

Only in 1987 the Marinovs received permission to emigrate and left for
Israel. As we all thought that time, emigration meant leaving for good with
practically zero chances to see or contact each other again. However, things
were changing fast and freedom to travel abroad, unbelievable during Soviet
times, came to our country. In 1990 Inna was able to go to Israel and for a
whole month enjoyed friendly atmosphere of Marinov’s home. She and Lilia
even now recall with mutual pleasure how nice that time was. After a couple
of years Misha’s life in Israel was successfully arranged. He got a professor
position in Technion and was happy to be there. I remember how proudly he
showed me the campus, labs and students during my first visit to Haifa. He
enthusiastically returned to research that had been interrupted for 6-7 years.
As I can judge by what and how I learned from him, he was a very good teacher
and did teaching with vigor and love. On the other hand, there remained warm
feelings toward ITEP, and often, when going in the morning to his office in
Technion, he used to say, addressing Inna and Lilia, “Bye girls, I am going to
ITEP.”

There are several fields where Misha made very important contributions,
despite a long break in his scientific activity. But I am not going to describe
them all, since, I think, this will be described in the Introduction to this volume.
I will mention only two which have some relation to me. Misha’s results on
the application of path integral methods to complicated quantum systems are
internationally renowned and I am proud that I recommended Maurice Jacob
to publish Marinov’s review on the subject in Physics Reports.4 This was the
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last paper written by Misha, while he was still in ITEP. Another subject where
M. Marinov made a very essential contribution together with V. Popov was
electron-positron production by an external electromagnetic field.5 The method
developed in these works was applied to the non-perturbative calculations of
cosmological particle production by scalar (inflaton) field in our paper with
D. Kirilova,6 which is discussed below.

2 Particle production in cosmology: brief historical review

There are two different cases of quantum particle production by external clas-
sical fields that are cosmologically interesting. The first is the production by
time-dependent background metric or, in other words, by gravitational field
and the second is the transformation of classical (oscillating) inflaton field
into elementary particles and the corresponding universe (re)heating. Parti-
cle production by gravity might be essential in the very early universe near
cosmological singularity when the strength of gravitational field was close
to the Planck value. Creation of particles by isotropic Friedman-Robertson-
Walker (FRW) metric was pioneered by Parker7 and further developed in a
series of papers.8,9,10 Particle production by gravity in anisotropic cosmologies
was considered in Refs. 11. As argued in these papers, particle production in
anisotropic case creates anisotropic distribution of matter and back reaction
of the created matter on the metric could lead to isotropization of the lat-
ter. Thus, in principle, the observed FRW cosmology might originate from
a rather general initial state. More references to the subsequent works and
detailed discussion can be found in the books.12

There is an important difference between particle production in isotropic
and anisotropic cosmologies. Isotropic FRW metric is known to be conformally
flat, i.e. after a suitable coordinate transformation it can be reduced to the
form:

ds2 = gµνdx
µdxν = a2(r, τ)

(

dτ2 − d~r 2
)

. (1)

It follows from this expression, in particular, that FRW metric cannot create
massless particles if the latter are described by conformally invariant theory.7

If the particle mass m is non-vanishing but the interactions are conformally
invariant, their production rate is suppressed as a power of the ratio (m/mPl).
(Of course, non-vanishing masses break conformal invariance.) These state-
ments can be easily checked in perturbation theory. The coupling of gravity to
matter fields is given by (gµν − ηµν)Tµν , where ηµν is the Minkowski metric
tensor and Tµν is the energy-momentum tensor of matter. If the metric tensor
is given by expression (1), the coupling to matter is proportional to the trace
of the energy-momentum tensor that vanishes in conformally invariant theory.
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A well known example of the theory which is conformally invariant at clas-
sical level (i.e. without quantum corrections) is electrodynamics with massless
charged fermions, or any other (possibly non-abelian) gauge theory describ-
ing interacting massless gauge bosons and fermions. However quantum trace
anomaly13 breaks conformal invariance and gives rise to a non-zero trace of
Tµν . In SU(N) gauge theory with Nf number of fermions the trace of the
energy-momentum tensor of matter is equal to

Tµµ =
α

π

(

11N

3
− 2Nf

3

)

GµνG
µν , (2)

where Gµν is the gauge field strength tensor. This anomaly could strongly
enhance generation of electromagnetic field (or any other gauge fields) in the
early universe.14

Another simple and important theory of a free massless scalar field φ is
not conformally invariant even at the classical level if φ is minimally coupled
to gravity (that is through covariant derivatives only). The energy-momentum
tensor of such field is given by

Tµν(φ) =
1

2
∂µφ∂νφ−

1

4
gµν∂αφ∂

αφ (3)

and its trace Tµµ = −(1/2)∂αφ∂αφ is generally non-vanishing. Conformal
invariance can be restored if one adds to the free Lagrangian the nonminimal
coupling to gravity in the form Rφ2/12 (see e.g. Refs. 12). However it would be
better not to restore it because generation of primordial density perturbations
at inflation,15 which serve as seeds for large scale structure formation, is possible
only for non-conformal fields.

Another realistic example of conformally non-invariant theory with mass-
less fields is gravity itself. It was shown that gravitational waves are not con-
formally invariant in the standard General Relativity.16 This explains efficient
production of gravitational waves during inflationary stage.17

A renewed interest to gravitational particle production arose in connection
with a possible explanation of the observed ultra-high energy cosmic rays by
heavy particle decays.18 There are two competing mechanisms of creation of
such particles in cosmology: by background metric and by inflaton field. The
former was considered in Refs. 19 (for a review see Ref. 20), while particle
production by inflaton will be discussed below.

In the earlier papers21 the universe (re)heating at the final stage of infla-
tion through particle production by the oscillating inflaton field was treated in
a simplified perturbation theory approximation. First non-perturbative treat-
ment was performed in two papers.6,22 In what follows we concentrate on the
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approach of Ref. 6 where the imaginary time method was used. In both pa-
pers6,22 a possibility of parametric resonance enhancement of particle pro-
duction rate, noticed long ago,23 was mentioned. However, it was argued in
the first of them that the resonance was not effective because the produced
particles were quickly removed from the resonance band by the cosmological
expansion and elastic scattering on the background. A more careful analysis of
the subsequent paper22 showed that under certain condition expansion might
be irrelevant and did not destroy the resonance. In this case a strong amplifica-
tion of the production probability and much faster process of post-inflationary
(re)heating could be expected. After Ref. 24 the issue of the parametric reso-
nance (re)heating has attracted great attention, and now the number of pub-
lished papers on the subject is measured by a few hundreds. However, a review
of this activity is outside the scope of the present paper and below we will con-
fine ourselves to the problem of fermion production by a time dependent scalar
field where parametric resonance is not effective.

Concerning production of fermions, there is a contradiction in the litera-
ture between the paper,6 where non-perturbative production of fermions was
pioneered, and the subsequent ones. While in Ref. 6 it was stated that fermion
production is always the strongest in perturbation theory regime, and in the
opposite – quasiclassical – limit the production is noticeably weaker, in subse-
quent works it was argued that in non-perturbative regime fermion production
was strongly enhanced so that it could even compete with resonant boson
production. Calculations in Ref. 6 have been performed by imaginary time
method, while other works used either numerical calculations or some approxi-
mate analytical estimates. I will argue in what follows that there is practically
no difference between the results of all calculations, earlier and later ones, but
the difference is in the interpretation of the results and that fermion produc-
tion by the inflaton is always weak, weaker than that found in perturbation
theory.

3 Particle production in perturbation theory

Let us start from consideration of production in the case when perturbation
theory is applicable and calculations are straightforward and simple. In this
section we will neglect the universe expansion and assume that the external
scalar field periodically changes with time according to

φ(t) = φ0 cosωt . (4)

Here φ0 is the amplitude of the field, it can be slowly varying function of time,
and the frequency of oscillations ω coincides with the mass of φ if the latter
lives in the harmonic potential U(φ) = m2

φφ
2/2.
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We assume that φ is coupled to fermions through the Yukawa interaction,

Lψ = ψ̄ (i∂/+m0)ψ + gφψ̄ψ . (5)

Perturbation theory would be valid if the coupling constant were small, g ¿ 1,
which is well fulfilled for the inflaton field, and if the fermion mass is smaller
than the mass of the inflaton, mφ = ω. The last condition may not be true even
if m0 < mφ because the interaction with φ introduces effective time-dependent
mass

m1(t) = gφ0 cosωt , (6)

and for a large amplitude φ0 the latter may be large in comparison with ω for
most of the oscillation period, except for a small part, when cosωt is close to
zero. In this case perturbation theory is invalid.

It is practically evident, even without calculations, that in perturbative
case the rate of particle production is equal to the width of the decay of the
scalar boson φ into a pair of fermions:

ṅψ/nφ = Γφ = g2ω/8π , (7)

where nψ,φ are the number densities of ψ and φ particles per unit volume
respectively and we assumed for simplicity that the fermion mass m0 = 0 (it
is straightforward to lift this restriction).

Still, to make a comparison with subsequent non-perturbative calculations,
we will sketch below the derivation of this result. According to general rules of
quantum field theory, the amplitude of production of a pair of particles with
momenta ~p1 and ~p2 by an external time-dependent field φ(t) in the first order
of perturbation theory is given by

A(~p1, ~p2) = g

∫

d4x φ(t) 〈~p1, ~p2| ψ̄(x)ψ(x) |vac〉 , (8)

where the state 〈~p1, ~p2| is produced by action of the creation operators on
vacuum in the standard second-quantized decomposition of Dirac operators ψ
and ψ̄:

ψ(x) =
∑

s

∫

d3k

(2π)3

[

uskb
s
ke

−ik·x+ vskd
s†
k e

ik·x
]

, (9)

where bsk and ds†k are annihilation and creation operators for particles and
antiparticles with momentum k and spin s, respectively.
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Carrying out the usual anti-commutation algebra we arrive at the integral

∫

d3k d3k′δ(~k − ~p1)δ(~k
′ − ~p2) e

i(E+E′)t−i(~k+~k′)~x . (10)

The integral can be trivially taken and substituted into the integral (8) over
d3xdt. Integration over d3x gives δ(~p1 + ~p2) and we are left with the Fourier
transform a

A(~p1, ~p2) ∼ g2δ(3)(~p1 + ~p2)

∫

dt φ(t) ei(E1+E2)t . (11)

The probability of particle production is proportional to |A(~p1, ~p2)|2 and
contains the square of momentum delta-function. The latter is treated in the
standard way,

[δ(~p1 + ~p2)]
2 = 2πV δ(~p1 + ~p2) , (12)

where V is the total space volume. The origin of the volume factor is evident:
since the external field is space-point independent, so is the probability of
production per unit volume and the total probability is proportional to the
total volume.

Similar situation is realized for the time dependence in the case of periodic
external fields, if one neglects back reaction of the produced particles on the
field evolution and on the probability of production. The former can be taken
into account by a (slow) decrease of the field amplitude φ0(t), while the latter is
determined by the statistics of the produced particles: the probability of boson
production is proportional to the phase space density of already produced
bosons, (1 + fk), while the probability of fermion production is inhibited by
the factor (1−fk). This back reaction effect is absent for Boltzmann statistics,
which we will mostly assume in what follows. Thus, for a periodic external
field one would expect that the probability of production is proportional to
the total time interval, during which the external field was operating. In the
idealistic case of φ ∼ exp(iωt), its Fourier transform gives δ(2E − ω), and the
square of the latter is, as above, ttotδ(2E − ω). The second factor ensures
energy conservation and is infinitely large for E = ω/2. It means that the
phase space density of the produced particles becomes very large after period
of time when the energy conservation is approximately established. One can
check that this time is much shorter than 1/Γ (where Γ is the perturbative
decay rate); still, the time of transition of energy from the inflaton field to

a For details and more rigorous consideration in terms of Bogolyubov coefficients see, e.g.,

Appendix A in Ref. 25.



112 A.D. Dolgov

the produced fermions is given by 1/Γ. This fact is commonly agreed upon in
the case of perturbative production. The statement in the literature that in
non-perturbative regime fermion production could be very strong is possibly
related to this trivial rise of the occupation numbers and does not mean that
fermion production can compete with production of bosons (see below).

In the case when external field operates during a finite period of time,
starting e.g. from t = 0, or if one is interested in the number of produced
particles at the running moment t, the integral in expression (11) should be
taken in the limits (0, t) and for the particular case of φ=φ0 cosωt one obtains:

I(t;E,ω) ≡
∫ t

0

dt e2iEt cosωt

= ei(E−ω/2)t
[

sin(E − ω/2)t
2E − ω + eiωt

sin(E + ω/2)t

2E + ω

]

. (13)

For E close to ω/2 the first term dominates and the number of produced
fermions rises as t2 until t∼1/|2E−ω|. At larger times it oscillates. The same
phenomena was found in non-perturbative calculations. Indeed, the phase
space number density of the produced particles (we use this term interchange-
ably with the “occupation number”) is given by

fp = g2φ2
0 |I(t;E,ω) |2 . (14)

As we have argued above, usually one has | I(t;E,ω) |2= 2πt δ(2E − ω). In
this case the number density of the produced particles as a function of time is
given by

n(t) =

∫

d3p

(2π)3
fp =

g2ω

8π
φ2

0ωt = Γnφt , (15)

where nφ = φ2
0ω is the number density of φ-bosons and Γ is their decay width

given by Eq. (7).
A detailed explanation of the discussed phenomena can be found in text-

books on quantum mechanics in the section where perturbation theory for time
dependent potential is presented, see e.g. Ref. 26.

Returning to the occupation number (14) we see that for (ω− 2E)t < 1 it
evolves as fp ≈ g2φ2

0t
2 and reaches unity at t= t1=1/gφ0. This is much earlier

than td = 1/Γ which is the characteristic decay time of φ(t):

td
t1

=
8π

g

φ0

ω
. (16)
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Taken formally, this ratio may reach the value 108−109. This is an explanation
of statement that fermions could be very quickly produced by inflaton. On the
other hand, although some fermionic bands (approximately satisfying energy
conservation) might be quickly populated, the total transfer of energy from
the inflaton to the produced particles is determined by the total decay rate
and is much slower. Roughly speaking, fp = 1 corresponds to production of
only one pair of fermions and, of course, the energy of this pair is negligible in
comparison with the total energy accumulated in the classical field φ(t).

Perturbation theory is not applicable if the effective mass of fermions
meff=(m0+gφ0) is larger than the frequency of the oscillations of the scalar
field. For example, the probability of pair production by two-quanta process,
in which the energy of each produced fermion is equal to ω, is related to that of
one-quantum process, E = ω/2, as W2/W1 ∼ (gφ0/ω)

2. It is still possible that
φ0/gω À 1, while gφ0/ω < 1, so that perturbation theory is reliable and the
relation td/t1 À 1 still holds. However in many practically interesting cases
gφ0/ω > 1 and in this range of parameters the result obtained above can serve
only for the purpose of illustration and for more precise statements we have
to go beyond perturbation theory. This will be done in the following section
by the imaginary time method.27,28,5 (For recent applications of this method
and a more complete list of references see Refs. 29.) It is qualitatively clear
that non-perturbative effects could only diminish the rate of particle produc-
tion because the non-perturbative calculations take into account non-vanishing
and large value of the effective mass of the produced particles and this leads
to a smaller rate of the production in comparison with the case when the in-
teraction is taken in the form gφψ̄ψ but its contribution into fermion effective
mass is neglected. As we see below, the suppression of the production rate in
nonperturbative regime6 in comparison with perturbation theory is given by
the factor (ω/gφ)1/2 in qualitative agreement with these simple arguments.

Effects of quantum statistics were neglected above, and thus the results
obtained are valid only if fp < 1. The corresponding corrections can be ap-
proximately introduced by multiplication of the r.h.s. of Eq. (14) by the factor

(1± fp) and correspondingly, f
(f,b)
p = g2φ2

0|I|2/(1± g2φ2
0|I|2), where the “±”

signs refer to fermions and bosons respectively. One sees that the production

of fermions effectively stops (as one should expect) when f
(f)
p ∼ 1, while pro-

duction of bosons tends to infinity. Presumably a more accurate treatment
would not allow bosons to reach infinitely large density in a finite time but the
message is clear, the production of bosons becomes explosive in perturbation
theory with characteristic time of the order of t1 = 1/(gφ0) and all the energy
of the inflaton would go into that of the produced bosons during approximately
this time. There are several effects that can weaken this conclusion. One is
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a possible inapplicability of perturbation theory for a large gφ0/ω. This ef-
fect qualitatively acts in the same way as in fermionic case discussed above.
Still, even if the gφ0/ω À 1 the effect of explosive production of bosons would
survive due to parametric resonance in equation of motions for the produced
modes.6,22,24 Another two effects that could diminish the production are the
cosmological red-shift of momenta of the produced particles and their scat-
tering on other particles in the background. Both would push the produced
particles away from the resonance band and could significantly slow down the
production in the case of narrow resonance,6 while in the case of wide resonance
the effect survives.22,24

On the other hand, both red-shift and scattering of the produced fermions
back react on their production in exactly opposite (to bosons) way. These phe-
nomena “cleans” the occupied zone and allows for production of more fermions.

4 Quasiclassical limit: imaginary time method

4.1 Small mass case

Usually, non-perturbative calculations are not simple but in the case that we
are considering there is a fortunate circumstance that in the anti-perturbative
limit quasiclassical approximation works pretty well. The latter can be effi-
ciently treated by the imaginary time method.27,28,5 Below we will essentially
repeat Ref. 6 correcting some typos and algebraic errors, though the basic re-
sults of the paper remain intact.

The coupling of φ(t) to the produced particles is equivalent to prescription
of the time dependent mass to the latter, m(t) = m0 + gφ(t). The classical
Lagrange function for a relativistic particle with such a mass has the form

Lcl = −m(t)
(

1− ~V 2
)1/2

, (17)

where ~V is the particle velocity. The corresponding Hamiltonian is

H =
[

p2 +m2(t)
]1/2 ≡ Ω(t) . (18)

The quantization of this system can be achieved by the path integral method.
The Green’s function of the quantum particle has the form (see e.g. Ref. 4):

G(~xf , tf ; ~xi, ti) =

∫

D~pD~x exp

[

i

∫ tf

ti

dt
(

~p ~̇x−H
)

]

. (19)

This functional integral can be easily taken:

G(~xf , tf ; ~xi, ti) =

∫

d3p

(2π)3
exp

[

i~p (~xf − ~xi)− i
∫ tf

ti

dtΩ(t)

]

. (20)
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According to the general rules of quantum mechanics the amplitude of the
transition from the state given by the initial wave function Ψi into that given
by Ψf is equal to

A(~p1, ~p2) =

∫

d3xi d
3xf Ψ∗

f (xf )G(~xf , tf ; ~xi, ti)Ψi(xi) , (21)

where plane waves are usually substituted for Ψi,f .
To obtain the amplitude of creation of a pair of particles the contour of

integration over time should be shifted into complex t-plane in such a way
that it goes around the branching point of the energy Ω in the direction of
changing the sign of energy from negative to positive. This corresponds to
transition from the lower continuum of the Dirac sea to the upper one, i.e. to
pair creation. Thus, we find

A(~p1, ~p2) = (2π)
3
δ (~p1 + ~p2) exp

[

− i
∫

C(ti,tf )

dt Ω(t)

]

, (22)

where the contour C(ti, tf ) starts at t = ti, ends at t = tf , and turns around
the branching point of Ω in the way specified above.

The position of the branching points tb = t′ + it′′ can be found from

p2 + (m0 + gφ0 cosωt)
2
= 0 . (23)

Correspondingly,

m0 + gφ0 (cos τ
′ cosh τ ′′ − i sin τ ′ sinh τ ′′) = ±ip , (24)

where τ = ωt. In what follows we assume that m0 = 0 and it will grossly
simplify technical details. In this limit τ ′ = π/2+nπ and sinh τ ′′ = ±(p/gφ0).

The integral along the cut τ = τ ′ + iη is real and, according to our pre-
scription, negative. It gives exponential suppression factor for the production
probability, W ∼ exp(−2Q), with

Q =
2

ω

∫ τ ′′

0

dη
(

p2 − g2φ2
0 sinh2η

)1/2
. (25)

This integral can be expressed through complete elliptic functions as30

Q =
2
√

p2 +m2
1

ω

[

K (β)− E(β)
]

, (26)

where
m1 = gφ0 , and β = p/

√

p2 +m2
1 . (27)
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For small β these functions can be expanded as K(β) ≈ (π/2)(1 + β2/4) and
E(β) ≈ (π/2)(1− β2/4), so that Q ≈ (π/2)(p2/ωm1).

The total production amplitude is equal to the sum of expressions (22)
with all the contours encircling the proper branch points between ti and tf .
Since the integrals along imaginary direction idη are all real and have the
same value for all branch points, their contribution to the amplitude gives the
common factor exp(−Q). The integrals over real time axis corresponding to dif-
ferent contours C around neighboring branch points differ by the phase factor
An+2/An = exp(2iα), because the energy changes sign after the integration
contour turns around branch points. The absence of the contribution from the
nearest cut is related to the particle statistics and is discussed, e.g., in Refs.
28 and 5. The phase α is given by:

α =

∫ 2π

0

dt
√

p2 +m2
1 cos

2 ωt =
4
√

p2 +m2
1

ω
E
(

√

1− β2
)

. (28)

All this is true if the free fermion mass is vanishing, m0 = 0, otherwise equa-
tions become significantly more complicated. In the limit of small β we find30

E
(

√

1− β2
)

≈ 1 +
β2

2

(

ln
4

β
− 1

2

)

, (29)

while for β close to 1 the necessary expressions are presented after Eq. (27)
with the interchange β2 ↔ (1− β2).

Summing over all branch points we obtain:

A(~p1, ~p2) = (2π)
3
δ (~p1 + ~p2) exp (−Q+ iα)

sin(Nα)− 1

sinα− 1
, (30)

where N is the total number of branch points included in the amplitude; it is
approximately equal to the total time in units 1/ω during which the particles
are produced, N = Integer[(tf − ti)/ω]. The last factor reminds that coming
from the integration over time in perturbation theory discussed in Sec. 3 and
in fact its physical nature is the same. For very large N , formally for N →∞,
it tends to

sin(Nα)

sinα
→ π

∑

j

δ (α− πj) . (31)

These delta-functions impose energy conservation for the production of pair
of particles by j quanta of the field φ. Note that in contrast to the lowest
order perturbation theory, when only a single quanta production is taken into
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account, the expression (30) includes production of a pair by many quanta of
the field φ. For example, in the limit of high momenta of the produced particles
these delta-functions are reduced to δ(2p − jω), the same as in perturbation
theory for j-quanta production.

Treating again, as in Sec. 3, the square of delta-function as a product of
the single delta-function and δ(0) = πN with N expressed through the total
time t, during which the particles have been produced, as the integer part of
tω, we find the following expression for the rate of production per unit time
and unit volume,6

ṅ = π ω
∑

j

∫

d3p

(2π)3
exp(−2Q) δ (α− πj) . (32)

In the limit of m1 À ω one obtains

Q ≈ π

2

p2

ωm1
, (33)

α ≈ 4m1

ω

[

1 +
p2

2m2
1

(

ln
4m1

p
+ 1

)]

, (34)

and hence,

ṅ =
1

2π

∑

jm

{

exp

[

−π
2 (j − (4m1/πω))

ln(4m1/pj) + 1

]

ω2m1pj
ln(4m1/pj) + 1/2

}

. (35)

Here summation starts from the minimum integer value jm ≥ (4m1/πω) and
pj is determined from the equation α = jπ, i.e.

p2
j ≈

(πm1ω/2) (j − 4m1/πω)

ln(4m1/pj) + 1
. (36)

A rough estimate gives ṅ ∼ ω5/2m
3/2
1 . Correspondingly, the characteristic rate

of the inflaton decay in the quasiclassical approximation is given by

Γq = ṅ/nφ = ṅ/(ωφ2
0) ∼ Γ (ω/m1)

1/2
, (37)

where Γ is the decay rate in perturbation theory (7). One sees that in the
quasiclassical limit the decay rate is suppressed in comparison with the formal
result of perturbation theory as a square root of the ratio of the oscillation
frequency to the amplitude of the scalar field. This suppression can be un-
derstood as follows.6 Most of the time the instant value of the field φ(t) and
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the effective mass of the fermions, meff = gφ0 cosωt are large in comparison
with the oscillation frequency. As it is well known (see also Sec. 4.2 below),
the probability of particle production in this case is exponentially suppressed.
However, when cosωt is very close to zero the effective mass of the produced
particles is smaller than ω and they are essentially produced at this short time
moments. This results in a much milder suppression of the production, not
exponential but only as (ω/gφ0)

1/2.
In case of finite and not too big N we will see that, according to the

calculations of Ref. 6 presented above, the occupation number fp would reach
unity in a much shorter time than 1/Γq. This result was rediscovered later
in Refs. 31 and 32 by numerical calculations and reconfirmed by analytical
methods in Ref. 33. However, as it has been already argued, this does not mean
that non-perturbative production of fermions is strong, it is always weaker than
the perturbative one.

The calculations presented above do not include the effects of quantum
statistics, so strictly speaking, they are valid for “boltzons”. Thus, they present
an upper bound for the production of fermions. In the fermionic case, the
production would stop when the occupation number, fp, approaches unity,
while production of “boltzons” would go unabated. However, if the particles
from the occupied Fermi band are quickly removed by scattering or red-shift
(as we discussed above) the production of fermions would go essentially with
the same rate as production of “boltzons”.

For a finite number of oscillations N the occupation number of the pro-
duced particles is equal to (see Eq. (30))

fp(N) = exp(−2Q)

(

sin(Nα)− 1

sinα− 1

)2

. (38)

The last factor is rather similar to that in Eq. (13). This is an oscillating
function of N . For α = π(1 − ε) with a small ε it rises roughly as N 2 during
N=1/(2ε) oscillations. The occupation number increases with time discontin-
uously as a series of discrete jumps as time t/ω reaches integer values. During
this stage fp may quickly rise with the speed much faster than the rate Γq,
see Eq. (37), in complete analogy with the perturbative case considered above
in Sec. 3. However, as we have already stressed, this does not mean that the
production of fermions goes faster than in perturbation theory.

After this period of increase, fp starts to go down and approaches zero at
N0 ≈ 1/ε. This oscillating behavior of the number of produced particles was
noticed long ago in the problem of e+e−-pair creation by periodic electric field
(for the list of references see, e.g., the book by Grib et al in Ref. 12). Thus, it
looks as though particles are produced by the field and after a while they all
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are absorbed back. This behavior is difficult to digest. Note that it is absent
if time is very large, tending to infinity, as it was discussed above. In this
case the energy conservation is strictly imposed by the delta-function, α = πn
(where n is an integer), or in other words, ε = 0 and N0 →∞.

Possibly this mysterious phenomenon of re-absorption of the produced par-
ticles is related to the fact that during finite time the external field φ(t) does
not disappear and the particle vacuum is not well defined over this time depen-
dent background. To resolve the ambiguity one may calculate the transition of
energy from the time-varying field φ(t) into other quantum states which are not
necessarily determined in terms of particles. Energy density, in contrast to the
particle number density, can be unambiguously defined in terms of local fields
operators and does not suffer from any ambiguity related to the non-local char-
acter of the latter. The energy density of the quantum field ψ, defined as the
expectation value of the time-time component of its energy-momentum opera-
tor, may also exhibit the oscillating behavior described above but the correct
interpretation is possibly not production of ψ-particles but some excitation
(”classical”?) of the (fermion) field ψ coupled to φ(t).

4.2 Large mass case

Let us now consider the case where the fermion mass m0 is large in comparison
with the oscillation frequency ω and with the amplitude of the oscillations,
m0 À gφ0, so that the total effective fermion mass mtot = m0 + gφ0 cosωt
never vanishes and always large. The calculations for this case have been only
done in Ref. 6 and we will reproduce them here. To be more precise, we will
reproduce only imaginary time part, while in Ref. 6 the method of Bogolyubov
coefficients was used as well.

Following this paper we will consider production of bosons. It will be
technically simpler allowing to make all calculations analytically. Qualitatively
the same results should be valid also for fermions, because for a large m0 the
production is weak and the occupation numbers remain small. We assume that
the effective mass has the form

m2(t) = m2
0 + g2φ2

0 cos
2ωt . (39)

This case is realized if the interaction of the inflaton field with the produced
particles (χ-bosons) has the form g2|χ2|φ2. The probability of production can
be found from the expressions of the previous subsection by the substitution
p2 → p2 +m2

0. In particular, the exponential damping factor is given, instead
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of (26), by

Q′ =
2
√

p2 +m2
0 +m2

1

ω

[

K (β′)− E(β′)
]

, (40)

where

(β′)2 ≡ 1− u2 = 1− m2
1

m2
0 +m2

1 + p2
(41)

and the complete elliptic integrals in the case of small k are expanded as30

K(β′) ≈ ln
4

u
+
u2

4

(

ln
4

u
− 1

)

E(β′) ≈ 1 +
u2

2

(

ln
4

u
− 1

2

)

. (42)

The phase difference over the period of oscillations is now given by

α′ =
4
√

p2 +m2
0 +m2

1

ω
E

(

√

m2
1

m2
1 +m2

0 + p2

)

≈ 2π
√

p2 +m2
0 +m2

1

ω

(

1 +
m2

1

4(m2
1 +m2

0 + p2)

)

. (43)

We can repeat the same calculations as in the previous subsection to find
the occupation number and the number density of the produced particles. The
production probability is now exponentially suppressed, as

exp

(

− 2
√

m2
0 +m2

1

ω
ln

[

16(m2
0 +m2

1)

m2
1

]

)

.

For a sufficiently large ratio m0/ω the production would be very weak, all
occupation numbers would be small in comparison with unity and bosons and
fermions would be equally poorly produced.

5 Back reaction and cosmological expansion effects

Now we briefly comment on applicability of the results discussed above to
realistic case of universe (re)heating after inflation. We have neglected universe
expansion and damping of the field φ due to energy transfer to the produced
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particles. The effect of expansion can be easily taken into account in conformal
coordinates where the metric takes the form (1) with space point independent
cosmological scale factor a(τ). Under transformation to conformal coordinates
and simultaneous redefinition of the gravitational, scalar, and fermionic fields
as gµν → a2gµν , φ → φ/a, and ψ → ψ/a3/2, respectively, the mode equation
for the scalar field takes the form

φ′′k + (k2 +m2a2− a′′/a )φk = 0 , (44)

where the derivatives are taken with respect to conformal time and k is co-
moving momentum. The presence of the term a′′/a demonstrates breaking of
conformal invariance even for massless scalar field, as it has been already men-
tioned in Sec. 2. All masses enter equation of motion in the combination ma,
so mass terms explicitly break conformal invariance. The interactions of the
types gφψ̄ψ, λφ4, and fφ2χ∗χ are invariant with respect to the transformation
of the fields specified above (note that the presence of the

√

det[gµν ] in the
action integral gives the necessary factor a4 to ensure this invariance).

The expressions for the scale factors through conformal time in three most
interesting cosmologies are the following:

a ∼ eHt = −1/Hτ DeSitter universe, inflation,

a ∼ t1/2 ∼ τ radiation dominance,

a ∼ t2/3 ∼ τ2 matter dominance. (45)

In particular, in the radiation dominated universe with conformally invariant
interactions, scalar field is conformally invariant but this is not true for other
expansion regimes. Correspondingly, particles production by massless scalar
field with the self-potential λφ4 can be reduced to the flat space case discussed
in the previous section. The difference between the potentials of φ in these
two cases, ω2φ2 and λφ4, is not essential and the obtained above results can
be easily translated to the λφ4/4 potential. Indeed, the equation of motion of
spatially homogeneous field φ in flat space-time (in conformal coordinates) is

φ′′ + λφ3 = 0 . (46)

This equation is solved in terms of Jacobi elliptic functions:30

φ(τ) = φ0 cn
(√

2λφ0τ ;
√
2
)

=

√
2π

κ

∑

n=1

cos
[

(n− 1/2)π
√
2λφ0τ/ κ

]

cosh
[

(n− 1/2)π
] , (47)
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where κ = Γ2(1/4)/4
√
π. The expansion is well approximated by the first

term and particle production rate can be estimated using results of the previ-
ous section. Significant deviations from those results can be expected only in
the case of heavy particle production when higher frequency terms in expan-
sion (47) may compete with the exponentially suppressed contribution coming
from lower terms (see Eq. (40)).

It should be repeated, however, that these results are true only for radia-
tion dominated regime of expansion. For other cosmologies the term a′′/a in
Eq. (44) is non-vanishing and must be taken into account.

Another effect, in addition to expansion, that results in a decrease of the
amplitude of the field φ(t), is back reaction of the particle production. Energy
that is transferred to the produced particles is taken from the field φ so the
energy density of the latter should become smaller. For harmonic oscillations
(in the case of the potential ω2φ2) only the amplitude of the field diminishes,
while frequency remains the same. For quartic potential both the frequency
and the amplitude of oscillations go down, as one can see from Eq. (47) with
φ0(t).

In the case of quickly oscillating field the effect can be easily estimated in
adiabatic approximation. One has to solve the equation for energy balance in
expanding background:

ρ̇ = −3H (ρ+ P ) , (48)

where ρ and P are respectively energy and pressure densities of the field φ and
the produced particles. For the former the solution of the standard equation of
motion without interactions should be substituted with the effect of production
included in a slow decrease of the amplitude φ0.

More accurate consideration demands using equation of motion modified
by the production process. Usually this is described by the introduction of
the “production friction term” into equations of motion, in addition to Hubble
friction,

φ̈+ 3Hφ̇+ U ′(φ) = −Γφ̇ , (49)

where U(φ) is the potential of φ and its derivative U ′(φ) is taken with respect
to φ. This anzats gives reasonable results only for harmonic potential but in
all other cases this approximation is not satisfactory. A better approximation
has been derived in Refs. 34 and 35. One starts with exact quantum operator
equation of motion for the field φ and some other fields χ that are coupled to
φ. The production of the latter by oscillations of φ results in a damping term
in the equation of motion for φ. As an example let us consider a simple case of
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scalar χ with trilinear coupling fφχ2. The corresponding equations of motion
are (expansion is neglected for simplicity)

φ̈−∆φ+ V
′

(φ) = fχ2, (50)

∂2χ+m2
χ χ = 2fφχ . (51)

The next step is to make quantum averaging of these equations in the presence
of classical field φc(t) (in what follows we omit sub-c and neglect the mass of
χ). This can be easily done in one-loop approximation,b and one comes to the
equation that contains only the field φ and accounts for the back reaction from
the production of the quanta of χ:

φ̈+ V ′(φ) =
f2

4π2

∫ t−tin

0

dτ

τ
φ(t− τ) , (52)

where tin is an initial time, when the particle production was switched on (it
is assumed that t > tin). The term in the r.h.s. that describes the influence
of the particle production is non-local in time as one should have expected
because the impact of the produced particle on the evolution of φ depends
upon all the previous history. To use this equation for realistic calculations
one has to define a proper renormalization procedure. It is described in detail
in Ref. 35. The coupling to fermions as well as quartic coupling λ′φ2χ2 are
also considered in that paper. Similar one-loop approach was used in Ref. 31
but no self-contained equation for φ was derived there.

Both effects, cosmological expansion and damping of φ due to particle
production, can be easily incorporated into imaginary time method. This
is especially simple in the case of fast oscillations and slow decrease of the
amplitude of φ. In this case the results obtained above practically do not
change. One should only substitute φ0(t) there and determine the law of
the evolution of the latter from the energy balance equation (48) or, more
accurately, from Eq. (52).

One more phenomenon deserves a comment here. As we have already
mentioned, production of bosons may be strongly amplified due to the presence
of the earlier produced bosons in the same final state. In classical language this
effect is described by the parametric resonance in the equation of motion of the
produced particles, while in quantum language it is the so called stimulated
emission well known in laser physics. When the amplitude of the driving field

b Some subtleties related to renormalization of mass and coupling constants are discussed in

Ref. 35.
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φ drops below a certain value, the resonance would not be excited and the rest
of φ would decay slowly. If the mass of φ is non-zero, this field behaves as non-
relativistic matter and its cosmological energy density drops as 1/a3. On the
other hand, the produced particles are mostly relativistic with energy density
decreasing as 1/a4. Thus, for a sufficiently slow decay rate of φ, the latter
may dominate the cosmological energy density once again, when previously
produced particles are red-shifted away. This would result in a low second
reheating temperature, much lower than in parametric resonance scenario. On
the other hand, the phenomenon of stimulated emission persists in perturbation
theory even with a very small amplitude of φ. Possibly even in this limit the
production is not very fast as well, because the width of the band is quite
narrow and the produced bosons are quickly pushed away from the band due
to cosmological red-shift and collisions. More detailed consideration is desirable
here.

6 Conclusion

It is demonstrated that imaginary time method very well describes particle
production by scalar field. It is very simple technically and permits to obtain
physically transparent results. The calculations were done here for a particular
case of periodic or quasiperiodic oscillations of the field but, as the experience
with production of e+e−-pairs by electric field shows (for a review see, e.g.,
the third paper in Ref. 5), the method also works well in the opposite case
of short pulse fields. The method is applicable in the quasiclassical limit. In
the opposite case perturbation theory is applicable, and hence, one can obtain
simple and accurate (semi)analytical estimates practically in all parameter
range.

The results of calculations in the quasiclassical limit are in a good agree-
ment with subsequent numerical ones.31,32 An important difference between
the latter papers and the initial one6 lays in the interpretation of the results.
According to all these papers the occupation numbers of the produced particles
quickly approaches unity but, in contrast to Refs. 31 and 32, it is argued in
Ref. 6 that the total production rate is nevertheless suppressed in comparison
to perturbation theory and the production of fermions by the inflaton with
Yukawa coupling to fermions is always weak. This conclusion is verified above.
As shown in this paper, the occupation numbers may quickly reach unity both
in perturbation theory and in non-perturbative case. Still the production rate,
even for particles obeying Boltzmann statistics, is very weak to ensure fast
(pre,re)heating. In the case of fermion production the rate is evidently much
weaker because the production must stop when the occupation number reaches
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unity and to continue the process the produced fermions should be eliminated
from the band. As it is argued in Sec. 4.1, the non-perturbative effects can
only diminish the production rate.

The bosonic case is opposite: the more bosons there are in the final state,
the faster is production. Thus, even in perturbation regime the boson pro-
duction can be strongly amplified because their occupation number may reach
unity in much shorter time than 1/Γ and the energy may be transferred from
the inflaton to the produced bosons much faster than it is given by the orig-
inal perturbative estimates,21 where the effect of stimulated emission is not
taken into account. Of course, to realize this regime the band should not be
destroyed by expansion and scattering, as argued in Ref. 6.

To summarize, we have shown that perturbation theory gives a good es-
timate of production of light fermions and bosons if Fermi exclusion principle
or stimulated emission, respectively, are taken into account. The formally
calculated production rate in perturbation theory is always larger than the
non-perturbative one, at least in the simple cases that we have considered. So,
the results of perturbation theory may be used as upper bounds for production
rates. Moreover, perturbation theory helps to understand physical meaning of
the obtained results and to interpret them correctly.

In many realistic cases (e.g. for large gφ0 or m0) perturbation theory is
not applicable, and to calculate the real production rate (not just an upper
bound) one has to carry out more involved non-perturbative calculations. In
quasiclassical (anti-perturbative) limit the imaginary time method permits to
obtain accurate and simple results and to avoid complicated numerical proce-
dure.
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